Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cancer Res. 1997 Dec 1;57(23):5232-7.

Evidence that the multidrug resistance protein (MRP) functions as a co-transporter of glutathione and natural product toxins.

Author information

  • 1Department of Pharmacology, Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA.

Abstract

The MRP (multidrug resistance protein) gene, a member of the ubiquitous superfamily of ATP-binding cassette transporters, is associated with the multidrug resistance of mammalian cells to natural product anticancer agents. We have previously shown that abrogation of MRP expression by gene targeting leads to hypersensitivity to several drugs. In two independently produced MRP double knockout clones, the baseline export of glutathione (GSH) was one-half that of wild-type embryonic stem (ES) cells. The export of GSH from wild-type ES cells, but not from the MRP double knockout clones, increased in the presence of etoposide (VP-16) and sodium arsenite, accompanied by equivalent decreases in intracellular levels of GSH. In the two MRP double knockout clones, the intracellular steady-state concentration of etoposide was twofold greater than that in wild-type cells. Depletion of intracellular GSH by D,L-buthionine sulfoximine increased the intracellular accumulation of radiolabeled etoposide in parental ES cells up to the level present in the two MRP knockout clones but did not change etoposide levels in the MRP knockout clones. These observations provide evidence that: (a) MRP exports GSH physiologically, presumably in association with an endogenous compound(s); (b) baseline MRP expression protects cells from the toxic effects of xenobiotics by effluxing the xenobiotics and GSH from the intracellular compartment into the extracellular medium by a co-transport mechanism; and (c) disruption of the gene encoding MRP abrogates the cotransport of xenobiotics and GSH.

PMID:
9393740
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk