Format

Send to:

Choose Destination
See comment in PubMed Commons below
PLoS One. 2013 May 1;8(5):e63317. doi: 10.1371/journal.pone.0063317. Print 2013.

Mitochondrial functional state impacts spontaneous neocortical activity and resting state FMRI.

Author information

  • 1Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America. P30NS052519

Abstract

Mitochondrial Ca(2+) uptake, central to neural metabolism and function, is diminished in aging whereas enhanced after acute/sub-acute traumatic brain injury. To develop relevant translational models for these neuropathologies, we determined the impact of perturbed mitochondrial Ca(2+) uptake capacities on intrinsic brain activity using clinically relevant markers. From a multi-compartment estimate of probable baseline Ca(2+) ranges in the brain, we hypothesized that reduced or enhanced mitochondrial Ca(2+) uptake capacity would decrease or increase spontaneous neuronal activity respectively. As resting state fMRI-BOLD fluctuations and stimulus-evoked BOLD responses have similar physiological origins [1] and stimulus-evoked neuronal and hemodynamic responses are modulated by mitochondrial Ca(2+) uptake capacity [2], [3] respectively, we tested our hypothesis by measuring hemodynamic fluctuations and spontaneous neuronal activities during normal and altered mitochondrial functional states. Mitochondrial Ca(2+) uptake capacity was perturbed by pharmacologically inhibiting or enhancing the mitochondrial Ca(2+) uniporter (mCU) activity. Neuronal electrical activity and cerebral blood flow (CBF) fluctuations were measured simultaneously and integrated with fMRI-BOLD fluctuations at 11.7T. mCU inhibition reduced spontaneous neuronal activity and the resting state functional connectivity (RSFC), whereas mCU enhancement increased spontaneous neuronal activity but reduced RSFC. We conclude that increased or decreased mitochondrial Ca(2+) uptake capacities lead to diminished resting state modes of brain functional connectivity.

PMID:
23650561
[PubMed - indexed for MEDLINE]
PMCID:
PMC3641133
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk