Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6961-6. doi: 10.1073/pnas.1304498110. Epub 2013 Apr 8.

Excessive Th1 responses due to the absence of TGF-β signaling cause autoimmune diabetes and dysregulated Treg cell homeostasis.

Author information

  • 1Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.

Abstract

TGF-β signaling in T cells is critical for peripheral T-cell tolerance by regulating effector CD4(+) T helper (Th) cell differentiation. However, it is still controversial to what extent TGF-β signaling in Foxp3(+) regulatory T (Treg) cells contributes to immune homeostasis. Here we showed that abrogation of TGF-β signaling in thymic T cells led to rapid type 1 diabetes (T1D) development in NOD mice transgenic for the BDC2.5 T-cell receptor. Disease development in these mice was associated with increased peripheral Th1 cells, whereas Th17 cells and Foxp3(+) Treg cells were reduced. Blocking of IFN-γ signaling alone completely suppressed diabetes development in these mice, indicating a critical role of Th1 cells in this model. Furthermore, deletion of TGF-β signaling in peripheral effector CD4(+) T cells, but not Treg cells, also resulted in rapid T1D development, suggesting that conventional CD4(+) T cells are the main targets of TGF-β to suppress T1D. TGF-β signaling was dispensable for Treg cell function, development, and maintenance, but excessive IFN-γ production due to the absence of TGF-β signaling in naive CD4(+) T cells indirectly caused dysregulated Treg cell homeostasis. We further showed that T cell-derived TGF-β1 was critical for suppression of Th1 cell differentiation and T1D development. These results indicate that autocrine/paracrine TGF-β signaling in diabetogenic CD4(+) T cells, but not Treg cells, is essential for controlling T1D development.

PMID:
23569233
[PubMed - indexed for MEDLINE]
PMCID:
PMC3637710
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk