Send to:

Choose Destination
See comment in PubMed Commons below
Mol Ther. 2013 Mar;21(3):580-7. doi: 10.1038/mt.2012.262. Epub 2013 Jan 22.

Triplex-forming peptide nucleic acids induce heritable elevations in gamma-globin expression in hematopoietic progenitor cells.

Author information

  • 1Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA.


Potentiating homologous recombination using triplex-forming peptide nucleic acids (PNAs) can be used to mediate targeted sequence editing by donor DNAs and thereby induce functional gene expression to supplant non-functional counterparts. Mutations that disrupt the normal function of the β-globin subunit cause hemoglobinopathies such as sickle cell disease and β-thalassemias. However, expression of the functional γ-globin subunit in adults, a benign condition called hereditary persistence of fetal hemoglobin (HPFH), can ameliorate the severity of these disorders, but this expression is normally silenced. Here, we harness triplex-forming PNA-induced donor DNA recombination to create HPFH mutations that increase the expression of γ-globin in adult mammalian cells, including β-yeast artificial chromosome (YAC) bone marrow and hematopoietic progenitor cells (HPCs). Transfection of human cells led to site-specific modification frequencies of 1.63% using triplex-forming PNA γ-194-3K in conjunction with donor DNAs, compared with 0.29% using donor DNAs alone. We also concurrently modified the γ-globin promoter to insert both HPFH-associated point mutations and a hypoxia-responsive element (HRE), conferring increased expression that was also regulated by oxygen tension. This work demonstrates application of oligonucleotide-based gene therapy to induce a quiescent gene promoter in mammalian cells and regulate its expression via an introduced HRE transcription factor binding site for potential therapeutic purposes.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk