Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 2013 Jan;33(2):293-306. doi: 10.1128/MCB.01285-12. Epub 2012 Nov 5.

Novel role for SHP-2 in nutrient-responsive control of S6 kinase 1 signaling.

Author information

  • 1Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.


Amino acids are required for the activation of the mammalian target of rapamycin complex 1 (mTORC1), which plays a critical role in cell growth, proliferation, and metabolism. The branched-chain amino acid leucine is an essential nutrient that stimulates mTORC1 to promote protein synthesis by activating p70 S6 kinase 1 (S6K1). Here we show that the protein tyrosine phosphatase SHP-2 is required for leucine-induced activation of S6K1 in skeletal myoblasts. In response to leucine, S6K1 activation is inhibited in myoblasts either lacking SHP-2 expression or overexpressing a catalytically inactive mutant of SHP-2. Activation of S6K1 by leucine requires the mobilization of intracellular calcium (Ca(2+)), which we show is mediated by SHP-2 in an inositol-1,4,5-trisphosphate-dependent manner. Ectopic Ca(2+) mobilization rescued the S6K1 activation defect in SHP-2-deficient myoblasts. SHP-2 was identified to act upstream of phospholipase C β4, linking it to the generation of nutrient-induced Ca(2+) release and S6K1 phosphorylation. Consistent with these results, SHP-2-deficient myoblasts exhibited impaired leucine sensing, leading to defective autophagy and reduced myoblast size. These data define a new role for SHP-2 as a nutrient-sensing regulator in skeletal myoblasts that is required for the activation of S6K1.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk