Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Struct Biol. 2012 Jul;179(1):56-67. doi: 10.1016/j.jsb.2012.04.012. Epub 2012 May 1.

A Bayesian adaptive basis algorithm for single particle reconstruction.

Author information

  • 1Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA. alp.kucukelbir@yale.edu

Abstract

Traditional single particle reconstruction methods use either the Fourier or the delta function basis to represent the particle density map. This paper proposes a more flexible algorithm that adaptively chooses the basis based on the data. Because the basis adapts to the data, the reconstruction resolution and signal-to-noise ratio (SNR) is improved compared to a reconstruction with a fixed basis. Moreover, the algorithm automatically masks the particle, thereby separating it from the background. This eliminates the need for ad hoc filtering or masking in the refinement loop. The algorithm is formulated in a Bayesian maximum-a-posteriori framework and uses an efficient optimization algorithm for the maximization. Evaluations using simulated and actual cryogenic electron microscopy data show resolution and SNR improvements as well as the effective masking of particle from background.

Copyright © 2012 Elsevier Inc. All rights reserved.

PMID:
22564910
[PubMed - indexed for MEDLINE]
PMCID:
PMC3377842
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk