Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2012 Aug 15;62(2):985-94. doi: 10.1016/j.neuroimage.2012.04.027. Epub 2012 Apr 19.

Quantitative fMRI and oxidative neuroenergetics.

Author information

  • 1Magnetic Resonance Research Center, Yale University, New Haven, Connecticut 06520, USA. fahmeed.hyder@yale.edu

Abstract

The discovery of functional magnetic resonance imaging (fMRI) has greatly impacted neuroscience. The blood oxygenation level-dependent (BOLD) signal, using deoxyhemoglobin as an endogenous paramagnetic contrast agent, exposes regions of interest in task-based and resting-state paradigms. However the BOLD contrast is at best a partial measure of neuronal activity, because the functional maps obtained by differencing or correlations ignore the total neuronal activity in the baseline state. Here we describe how studies of brain energy metabolism at Yale, especially with (13)C magnetic resonance spectroscopy and related techniques, contributed to development of quantitative functional brain imaging with fMRI by providing a reliable measurement of baseline energy. This narrative takes us on a journey, from molecules to mind, with illuminating insights about neuronal-glial activities in relation to energy demand of synaptic activity. These results, along with key contributions from laboratories worldwide, comprise the energetic basis for quantitative interpretation of fMRI data.

Copyright © 2012 Elsevier Inc. All rights reserved.

PMID:
22542993
[PubMed - indexed for MEDLINE]
PMCID:
PMC3389300
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk