Inactivation of Salmonella spp. in liquid whole egg using pulsed electric fields, heat, and additives

Food Microbiol. 2012 Jun;30(2):393-9. doi: 10.1016/j.fm.2012.01.004. Epub 2012 Jan 25.

Abstract

This paper evaluates the lethal effectiveness on 7 different Salmonella serovars of the application, in static and continuous conditions, of pulsed electric fields (PEF) followed by heat treatments in liquid whole egg (LWE) with additives (EDTA or triethyl citrate-TC-). Compared to heat treatments, the PEF (25 kV/cm and 75-100 kJ/kg) followed by heat (52°C/3.5', 55°C/2', or 60°C/1') in LWE with 2% TC permitted the reduction of heat treatment time from 92 fold at 52°C to 3.4 fold at 60°C, and 4.8 fold at 52°C in LWE with EDTA for a 9-Log(10) reduction of the population of Salmonella Enteritidis. The new designed treatments inactivated more than 5 Log(10) cycles of Salmonella serovars Dublin, Enteritidis 4300, Enteritidis 4396, Typhimurium, Typhi, Senftenberg, and Virchow, both in static and continuous conditions. Conversely, current heat pasteurization treatments of 60°C/3.5' and 64°C/2.5' reduced 5 Log(10) cycles of various serovars of Salmonella but only 2 and 3-4 Log(10) cycles of Salmonella Senftenberg and Salmonella Enteritidis 4396, respectively. Soluble protein content (SPC) decreased 1.8%, 1.3%, and 5.0% after the successive application of PEF followed by heat at 52, 55, and 60°C in the presence of 2% TC, respectively, whereas 1.6% and 9.4% of SPC were reduced after heat pasteurization at 60 and 64°C, respectively. Results indicate that designed treatments could be an alternative to current heat pasteurization of LWE as showed higher lethal effectiveness against Salmonella serovars with a similar or even lower decrement of the soluble protein content.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Egg Proteins / analysis
  • Eggs / analysis
  • Eggs / microbiology*
  • Electricity
  • Food Additives / pharmacology*
  • Hot Temperature
  • Pasteurization / methods*
  • Salmonella / growth & development*

Substances

  • Egg Proteins
  • Food Additives