Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Int J Radiat Oncol Biol Phys. 2012 Apr 1;82(5):e749-56. doi: 10.1016/j.ijrobp.2011.11.035. Epub 2012 Feb 11.

A novel markerless technique to evaluate daily lung tumor motion based on conventional cone-beam CT projection data.

Author information

  • 1Department of Computer Science, University of Texas at Dallas, Richardson, TX, USA.

Abstract

PURPOSE:

In this study, we present a novel markerless technique, based on cone beam computed tomography (CBCT) raw projection data, to evaluate lung tumor daily motion.

METHOD AND MATERIALS:

The markerless technique, which uses raw CBCT projection data and locates tumors directly on every projection, consists of three steps. First, the tumor contour on the planning CT is used to create digitally reconstructed radiographs (DRRs) at every projection angle. Two sets of DRRs are created: one showing only the tumor, and another with the complete anatomy without the tumor. Second, a rigid two-dimensional image registration is performed to register the DRR set without the tumor to the CBCT projections. After the registration, the projections are subtracted from the DRRs, resulting in a projection dataset containing primarily tumor. Finally, a second registration is performed between the subtracted projection and tumor-only DRR. The methodology was evaluated using a chest phantom containing a moving tumor, and retrospectively in 4 lung cancer patients treated by stereotactic body radiation therapy. Tumors detected on projection images were compared with those from three-dimensional (3D) and four-dimensional (4D) CBCT reconstruction results.

RESULTS:

Results in both static and moving phantoms demonstrate that the accuracy is within 1 mm. The subsequent application to 22 sets of CBCT scan raw projection data of 4 lung cancer patients includes about 11,000 projections, with the detected tumor locations consistent with 3D and 4D CBCT reconstruction results. This technique reveals detailed lung tumor motion and provides additional information than conventional 4D images.

CONCLUSION:

This technique is capable of accurately characterizing lung tumor motion on a daily basis based on a conventional CBCT scan. It provides daily verification of the tumor motion to ensure that these motions are within prior estimation and covered by the treatment planning volume.

Copyright © 2012 Elsevier Inc. All rights reserved.

Comment in

  • In regard to Yang et al. [Int J Radiat Oncol Biol Phys. 2012]
PMID:
22330989
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk