Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Immunol. 2011 Dec 1;187(11):5901-9. doi: 10.4049/jimmunol.1003266. Epub 2011 Nov 7.

Pancreatic islets engineered with SA-FasL protein establish robust localized tolerance by inducing regulatory T cells in mice.

Author information

  • 1Institute for Cellular Therapeutics, University of Louisville, Louisville, KY 40202, USA.

Abstract

Allogeneic islet transplantation is an important therapeutic approach for the treatment of type 1 diabetes. Clinical application of this approach, however, is severely curtailed by allograft rejection primarily initiated by pathogenic effector T cells regardless of chronic use of immunosuppression. Given the role of Fas-mediated signaling in regulating effector T cell responses, we tested if pancreatic islets can be engineered ex vivo to display on their surface an apoptotic form of Fas ligand protein chimeric with streptavidin (SA-FasL) and whether such engineered islets induce tolerance in allogeneic hosts. Islets were modified with biotin following efficient engineering with SA-FasL protein that persisted on the surface of islets for >1 wk in vitro. SA-FasL-engineered islet grafts established euglycemia in chemically diabetic syngeneic mice indefinitely, demonstrating functionality and lack of acute toxicity. Most importantly, the transplantation of SA-FasL-engineered BALB/c islet grafts in conjunction with a short course of rapamycin treatment resulted in robust localized tolerance in 100% of C57BL/6 recipients. Tolerance was initiated and maintained by CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells, as their depletion early during tolerance induction or late after established tolerance resulted in prompt graft rejection. Furthermore, Treg cells sorted from graft-draining lymph nodes, but not spleen, of long-term graft recipients prevented the rejection of unmodified allogeneic islets in an adoptive transfer model, further confirming the Treg role in established tolerance. Engineering islets ex vivo in a rapid and efficient manner to display on their surface immunomodulatory proteins represents a novel, safe, and clinically applicable approach with important implications for the treatment of type 1 diabetes.

PMID:
22068235
[PubMed - indexed for MEDLINE]
PMCID:
PMC3232043
Free PMC Article

Images from this publication.See all images (8)Free text

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk