Format

Send to:

Choose Destination
See comment in PubMed Commons below

Segmentation of Left Ventricle From 3D Cardiac MR Image Sequences Using A Subject-Specific Dynamical Model.

Author information

  • 1Department of Biomedical Engineering and Diagnostic Radiology, Yale University 310 Cedar Street, New Haven, CT 06520.

Abstract

Statistical model-based segmentation of the left ventricle from cardiac images has received considerable attention in recent years. While a variety of statistical models have been shown to improve segmentation results, most of them are either static models (SM) which neglect the temporal coherence of a cardiac sequence or generic dynamical models (GDM) which neglect the inter-subject variability of cardiac shapes and deformations. In this paper, we use a subject-specific dynamical model (SSDM) that handles inter-subject variability and temporal dynamics (intra-subject variability) simultaneously. It can progressively identify the specific motion patterns of a new cardiac sequence based on the segmentations observed in the past frames. We formulate the integration of the SSDM into the segmentation process in a recursive Bayesian framework in order to segment each frame based on the intensity information from the current frame and the prediction from the past frames. We perform "Leave-one-out" test on 32 sequences to validate our approach. Quantitative analysis of experimental results shows that the segmentation with the SSDM outperforms those with the SM and GDM by having better global and local consistencies with the manual segmentation.

PMID:
20052308
[PubMed]
PMCID:
PMC2801445
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk