Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Comp Neurol. 2009 Aug 1;515(4):454-64. doi: 10.1002/cne.22078.

Selective reduction of neuron number and volume of the mediodorsal nucleus of the thalamus in macaques following irradiation at early gestational ages.

Author information

  • 1Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520-8001, USA. ldselemon@aol.com

Abstract

Neurons in the macaque brain arise from progenitors located near the cerebral ventricles in a temporally segregated manner such that lethal doses of ionizing irradiation, if administered over a discrete time interval, can deplete individual nuclei selectively. A previous study showed that neuron number in the dorsal lateral geniculate nucleus is reduced following early gestational exposure to x-irradiation (Algan and Rakic [1997] J. Comp. Neurol. 12:335-352). Here we examine whether similarly timed irradiation decreases neuron number in three associational thalamic nuclei: mediodorsal (MD), anterior, and pulvinar. Ten macaques were exposed to multiple doses of x-rays (total exposure (175-350 cGy) in early gestation (E33-E42) or midgestation (E70-E90); eight nonirradiated macaques were controls. Only the early-irradiated monkeys, not the midgestationally irradiated animals, exhibited deficits in whole-thalamic neuron (-15%) and glia numbers (-21%) compared with controls. Reduction of neuron number (-26%) and volume (-29%) was particularly pronounced in MD. In contrast, cell number and volume were not significantly decreased in the anterior or pulvinar nuclei following early gestational irradiation. Thus, reduced thalamic neuron number was associated specifically with irradiation in early gestation. Persistence of the thalamic neuronal deficit in adult animals indicates that prenatally deleted neurons had not been replenished during maturation or in adulthood. The selective reduction of MD neuron number also supports the protomap hypothesis that neurons of each thalamic nucleus originate sequentially from separate lines of neuronal stem cells (Rakic [1977a] J. Comp. Neurol. 176:23-52). The early gestationally irradiated macaque is discussed as a potentially useful model for studying the neurodevelopmental pathogenesis of schizophrenia.

2009 Wiley-Liss, Inc.

PMID:
19459221
[PubMed - indexed for MEDLINE]
PMCID:
PMC2716797
Free PMC Article

Publication Types, MeSH Terms, Grant Support

Publication Types

MeSH Terms

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc. Icon for PubMed Central
    Loading ...
    Write to the Help Desk