Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2008 Dec 12;384(2):450-64. doi: 10.1016/j.jmb.2008.09.039. Epub 2008 Sep 24.

Amyloid beta-protein monomer folding: free-energy surfaces reveal alloform-specific differences.

Author information

  • 1Department of Neurology, David Geffen School of Medicine, and Molecular Biology Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Abstract

Alloform-specific differences in structural dynamics between amyloid beta-protein (Abeta) 40 and Abeta42 appear to underlie the pathogenesis of Alzheimer's disease. To elucidate these differences, we performed microsecond timescale replica-exchange molecular dynamics simulations to sample the conformational space of the Abeta monomer and constructed its free-energy surface. We find that neither peptide monomer is unstructured, but rather that each may be described as a unique statistical coil in which five relatively independent folding units exist, comprising residues 1-5, 10-13, 17-22, 28-37, and 39-42, which are connected by four turn structures. The free-energy surfaces of both peptides are characterized by two large basins, comprising conformers with either substantial alpha-helix or beta-sheet content. Conformational transitions within and between these basins are rapid. The two additional hydrophobic residues at the Abeta42 C-terminus, Ile41 and Ala42, significantly increase contacts within the C-terminus, and between the C-terminus and the central hydrophobic cluster (Leu17-Ala21). As a result, the beta-structure of Abeta42 is more stable than that of Abeta40, and the conformational equilibrium in Abeta42 shifts towards beta-structure. These results suggest that drugs stabilizing alpha-helical Abeta conformers (or destabilizing the beta-sheet state) would block formation of neurotoxic oligomers. The atomic-resolution conformer structures determined in our simulations may serve as useful targets for this purpose. The conformers also provide starting points for simulations of Abeta oligomerization-a process postulated to be the key pathogenetic event in Alzheimer's disease.

PMID:
18835397
[PubMed - indexed for MEDLINE]
PMCID:
PMC2673916
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk