Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Genome Biol. 2007;8(7):R151.

Human subtelomeric duplicon structure and organization.

Author information

  • 1The Wistar Institute, Spruce St, Philadelphia, PA 19104, USA.

Abstract

BACKGROUND:

Human subtelomeric segmental duplications ('subtelomeric repeats') comprise about 25% of the most distal 500 kb and 80% of the most distal 100 kb in human DNA. A systematic analysis of the duplication substructure of human subtelomeric regions was done in order to develop a detailed understanding of subtelomeric sequence organization and a nucleotide sequence-level characterization of subtelomeric duplicon families.

RESULTS:

The extent of nucleotide sequence divergence within subtelomeric duplicon families varies considerably, as does the organization of duplicon blocks at subtelomere alleles. Subtelomeric internal (TTAGGG)n-like tracts occur at duplicon boundaries, suggesting their involvement in the generation of the complex sequence organization. Most duplicons have copies at both subtelomere and non-subtelomere locations, but a class of duplicon blocks is identified that are subtelomere-specific. In addition, a group of six subterminal duplicon families are identified that, together with six single-copy telomere-adjacent segments, include all of the (TTAGGG)n-adjacent sequence identified so far in the human genome.

CONCLUSION:

Identification of a class of duplicon blocks that is subtelomere-specific will facilitate high-resolution analysis of subtelomere repeat copy number variation as well as studies involving somatic subtelomere rearrangements. The significant levels of nucleotide sequence divergence within many duplicon families as well as the differential organization of duplicon blocks on subtelomere alleles may provide opportunities for allele-specific subtelomere marker development; this is especially true for subterminal regions, where divergence and organizational differences are the greatest. These subterminal sequence families comprise the immediate cis-elements for (TTAGGG)n tracts, and are prime candidates for subtelomeric sequences regulating telomere-specific (TTAGGG)n tract length in humans.

PMID:
17663781
[PubMed - indexed for MEDLINE]
PMCID:
PMC2323237
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk