Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2006 Dec 29;281(52):39982-9. Epub 2006 Oct 5.

Deletion of the gene encoding the ubiquitously expressed glucose-6-phosphatase catalytic subunit-related protein (UGRP)/glucose-6-phosphatase catalytic subunit-beta results in lowered plasma cholesterol and elevated glucagon.

Author information

  • 1Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA.

Abstract

In liver, glucose-6-phosphatase catalyzes the hydrolysis of glucose-6-phosphate (G6P) to glucose and inorganic phosphate, the final step in the gluconeogenic and glycogenolytic pathways. Mutations in the glucose-6-phosphatase catalytic subunit (G6Pase) give rise to glycogen storage disease (GSD) type 1a, which is characterized in part by hypoglycemia, growth retardation, hypertriglyceridemia, hypercholesterolemia, and hepatic glycogen accumulation. Recently, a novel G6Pase isoform was identified, designated UGRP/G6Pase-beta. The activity of UGRP relative to G6Pase in vitro is disputed, raising the question as to whether G6P is a physiologically important substrate for this protein. To address this issue we have characterized the phenotype of UGRP knock-out mice. G6P hydrolytic activity was decreased by approximately 50% in homogenates of UGRP(-/-) mouse brain relative to wild type tissue, consistent with the ability of UGRP to hydrolyze G6P. In addition, female, but not male, UGRP(-/-) mice exhibit growth retardation as do G6Pase(-/-) mice and patients with GSD type 1a. However, in contrast to G6Pase(-/-) mice and patients with GSD type 1a, UGRP(-/-) mice exhibit no change in hepatic glycogen content, blood glucose, or triglyceride levels. Although UGRP(-/-) mice are not hypoglycemic, female UGRP(-/-) mice have elevated ( approximately 60%) plasma glucagon and reduced ( approximately 20%) plasma cholesterol. We hypothesize that the hyperglucagonemia prevents hypoglycemia and that the hypocholesterolemia is secondary to the hyperglucagonemia. As such, the phenotype of UGRP(-/-) mice is mild, indicating that G6Pase is the major glucose-6-phosphatase of physiological importance for glucose homeostasis in vivo.

PMID:
17023421
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk