Format

Send to:

Choose Destination
See comment in PubMed Commons below
Development. 2004 Nov;131(21):5381-92. Epub 2004 Oct 6.

FGF and PI3 kinase signaling pathways antagonistically modulate sex muscle differentiation in C. elegans.

Author information

  • 1Yale University School of Medicine, Department of Genetics, I-354 SHM, PO Box 208005, New Haven, CT 06520-8005, USA.

Abstract

Myogenesis in vertebrate myocytes is promoted by activation of the phosphatidyl-inositol 3'-kinase (PI3 kinase) pathway and inhibited by fibroblast growth factor (FGF) signaling. We show that hyperactivation of the Caenorhabditis elegans FGF receptor, EGL-15, similarly inhibits the differentiation of the hermaphrodite sex muscles. Activation of the PI3 kinase signaling pathway can partially suppress this differentiation defect, mimicking the antagonistic relationship between these two pathways known to influence vertebrate myogenesis. When ectopically expressed in body wall muscle precursor cells, hyperactivated EGL-15 can also interfere with the proper development of the body wall musculature. Hyperactivation of EGL-15 has also revealed additional effects on a number of fundamental processes within the postembryonic muscle lineage, such as cell division polarity. These studies provide important in vivo insights into the contribution of FGF signaling events to myogenesis.

PMID:
15469970
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk