Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Chem Biol. 2003 Dec;10(12):1303-11.

Regulating cell surface glycosylation by small molecule control of enzyme localization.

Author information

  • 1Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.

Abstract

Cell surface carbohydrates mediate interactions between the cell and its environment. Glycosyltransferases responsible for synthesis of cell surface oligosaccharides are therefore essential administrators of cellular communication. These enzymes often comprise large families. Redundancy of related family members and embryonic lethality both complicate genetic methods for deconvoluting functions of glycosyltransferases. We report a chemical method in which the activity of an individual glycosyltransferase is controlled by a small molecule. The approach exploits the requirement of Golgi localization, a common feature of glycosyltransferase superfamily members. In our approach, the glycosyltransferase is separated into two domains, one that determines localization and one responsible for catalysis. Control of enzyme activity is achieved using a small molecule to regulate association of the two domains. We used this method to regulate production of sialyl Lewis x by alpha1,3-fucosyltransferase VII in living cells.

PMID:
14700637
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk