Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13656-61. Epub 2003 Oct 31.

Essential role for RGS9 in opiate action.

Author information

  • 1Department of Psychiatry and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9070, USA.

Abstract

Regulators of G protein signaling (RGS) are a family of proteins known to accelerate termination of effector stimulation after G protein receptor activation. RGS9-2, a brain-specific splice variant of the RGS9 gene, is highly enriched in striatum and also expressed at much lower levels in periaqueductal gray and spinal cord, structures known to mediate various actions of morphine and other opiates. Morphine exerts its acute rewarding and analgesic effects by activation of inhibitory guanine nucleotide-binding regulatory protein-coupled opioid receptors, whereas chronic morphine causes addiction, tolerance to its acute analgesic effects, and profound physical dependence by sustained activation of these receptors. We show here that acute morphine administration increases expression of RGS9-2 in NAc and the other CNS regions, whereas chronic exposure decreases RGS9-2 levels. Mice lacking RGS9 show enhanced behavioral responses to acute and chronic morphine, including a dramatic increase in morphine reward, increased morphine analgesia with delayed tolerance, and exacerbated morphine physical dependence and withdrawal. These findings establish RGS9 as a potent negative modulator of opiate action in vivo, and suggest that opiate-induced changes in RGS9 levels contribute to the behavioral and neural plasticity associated with chronic opiate administration.

PMID:
14595021
[PubMed - indexed for MEDLINE]
PMCID:
PMC263869
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk