Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 1992 Feb;12(2):734-46.

Three novel functional variants of human U5 small nuclear RNA.

Author information

  • 1Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536-0182.

Abstract

We have identified and characterized three new variants of U5 small nuclear RNA (snRNA) from HeLa cells, called U5D, U5E, and U5F. Each variant has a 2,2,7-trimethylguanosine cap and is packaged into an Sm-precipitable small nuclear ribonucleoprotein (snRNP) particle. All retain the evolutionarily invariant 9-base loop at the top of stem 1; however, numerous base changes relative to the abundant forms of U5 snRNA are present in other regions of the RNAs, including a loop that is part of the yeast U5 minimal domain required for viability and has been shown to bind a protein in HeLa extracts. U5E and U5F each constitute 7% of the total U5 population in HeLa cells and are slightly longer than the previously characterized human U5 (A, B, and C) species. U5D, which composes 5% of HeLa cell U5 snRNAs, is present in two forms: a full-length species, U5DL, and a shorter species, U5DS, which is truncated by 15 nucleotides at its 3' end and therefore resembles the short form of U5 (snR7S) in Saccharomyces cerevisiae. We have established conditions that allow specific detection of the individual U5 variants by either Northern blotting (RNA blotting) or primer extension; likewise, U5E and U5F can be specifically and completely degraded in splicing extracts by oligonucleotide-directed RNase H cleavage. All variant U5 snRNAs are assembled into functional particles, as indicated by their immunoprecipitability with anti-(U5) RNP antibodies, their incorporation into the U4/U5/U6 tri-snRNP complex, and their presence in affinity-purified spliceosomes. The higher abundance of these U5 variants in 293 cells compared with that in HeLa cells suggests possible roles in alternative splicing.

PMID:
1310151
[PubMed - indexed for MEDLINE]
PMCID:
PMC364287
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk