Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nature. 2003 Aug 21;424(6951):952-6.

BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis.

Author information

  • 1Howard Hughes Medical Institute, Dana-Faber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.

Abstract

Glycolysis and apoptosis are considered major but independent pathways that are critical for cell survival. The activity of BAD, a pro-apoptotic BCL-2 family member, is regulated by phosphorylation in response to growth/survival factors. Here we undertook a proteomic analysis to assess whether BAD might also participate in mitochondrial physiology. In liver mitochondria, BAD resides in a functional holoenzyme complex together with protein kinase A and protein phosphatase 1 (PP1) catalytic units, Wiskott-Aldrich family member WAVE-1 as an A kinase anchoring protein, and glucokinase (hexokinase IV). BAD is required to assemble the complex in that Bad-deficient hepatocytes lack this complex, resulting in diminished mitochondria-based glucokinase activity and blunted mitochondrial respiration in response to glucose. Glucose deprivation results in dephosphorylation of BAD, and BAD-dependent cell death. Moreover, the phosphorylation status of BAD helps regulate glucokinase activity. Mice deficient for BAD or bearing a non-phosphorylatable BAD(3SA) mutant display abnormal glucose homeostasis including profound defects in glucose tolerance. This combination of proteomics, genetics and physiology indicates an unanticipated role for BAD in integrating pathways of glucose metabolism and apoptosis.

Comment in

PMID:
12931191
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk