Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 Apr 5;277(14):11721-7. Epub 2002 Jan 25.

Heterotrimeric G-proteins activate Cl- channels through stimulation of a cyclooxygenase-dependent pathway in a model liver cell line.

Author information

  • 1Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA. gordan.kilic@uchsc.edu

Abstract

Circulating hormones produce rapid changes in the Cl(-) permeability of liver cells through activation of plasma membrane receptors coupled to heterotrimeric G-proteins. The resulting effects on intracellular pH, membrane potential, and Cl(-) content are important contributors to the overall metabolic response. Consequently, the purpose of these studies was to evaluate the mechanisms responsible for G-protein-mediated changes in membrane Cl(-) permeability using HTC hepatoma cells as a model. Using patch clamp techniques, intracellular dialysis with 0.3 mm guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) increased membrane conductance from 10 to 260 picosiemens/picofarads due to activation of Ca(2+)-dependent Cl(-) currents that were outwardly rectifying and exhibited slow activation at depolarizing potentials. These effects were mimicked by intracellular AlF(4)(-) (0.03 mm) and inhibited by pertussis toxin (PTX), consistent with current activation through Galpha(i). Studies using defined agonists and inhibitors indicate that Cl(-) channel activation by GTPgammaS occurs through an indomethacin-sensitive pathway involving sequential activation of phospholipase C, mobilization of Ca(2+) from inositol 1,4,5-trisphosphate-sensitive stores, and stimulation of phospholipase A(2) and cyclooxygenase (COX). Accordingly, the conductance responses to GTPgammaS or to intracellular Ca(2+) were inhibited by COX inhibitors. These results indicate that PTX-sensitive G-proteins regulate the Cl(-) permeability of HTC cells through Ca(2+)-dependent stimulation of COX activity. Thus, receptor-mediated activation of Galpha(i) may be essential for hormonal regulation of liver transport and metabolism through COX-dependent opening of a distinct population of plasma membrane Cl(-) channels.

PMID:
11812774
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk