Format

Send to:

Choose Destination
See comment in PubMed Commons below
Exp Mol Pathol. 2001 Jun;70(3):215-30.

Spectrin oligomerization is cooperatively coupled to membrane assembly: a linkage targeted by many hereditary hemolytic anemias?

Author information

  • 1Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.

Abstract

In the erythrocyte, ankyrin is the major adapter protein linking tetramers of band 3 to the spectrin-actin cytoskeleton. This linkage involves a direct interaction between ankyrin and the 14th-15th repeat unit of beta-spectrin. The spectrin cytoskeleton itself is stabilized by the self-association of spectrin heterodimers into tetramers and larger oligomers, a process mediated by the 17th repeat unit of beta-spectrin and a short NH(2) -terminal sequence in alpha-spectrin. The self-association of spectrin and its ankyrin-mediated membrane binding have generally been considered independent events. We now demonstrate that spectrin self-association, the binding of spectrin to ankyrin, and the binding of ankyrin to the 43-kDa cytoplasmic domain of band 3 (cdb3) are coupled in a positively cooperative way. In solution, [(125)I]-labeled ankyrin was found by ND-PAGE3 to enhance the affinity of spectrin self-association by 10-fold. The reciprocal process was also true, in that spectrin tetramers and oligomers bound ankyrin with enhanced affinity relative to dimer spectrin. Saturation of the beta-spectrin self-association site by an NH(2) -terminal 80-kDa alpha-spectrin peptide enhanced the affinity of spectrin dimer for ankyrin, indicating a direct relationship between ankyrin binding and the occupancy of the beta-spectrin self-association site. cdb3 accentuated these cooperative interactions. Several inherited spectrin mutations that cause hemolytic disease but that do not directly destabilize the self-association or ankyrin-binding sites can be explained by these results. Three classes of mutations appear to disrupt cooperative coupling between self-association and ankyrin binding: (i) mutation of the linker sequences that join helices C and A in repeat units that intervene between the two functional sites, mutations that presumably block repeat-to-repeat transfer of conformational information; (ii) mutations in alpha-spectrin repeats 4 to 6 that disrupt the ability of this region to trans-regulate ankyrin binding by the adjacent beta-spectrin repeats 14-15; and (iii) exon-skipping mutations that shorten alpha-spectrin and force repeats 4 to 6 to fall out-of-register with the ankyrin-binding motif in beta-spectrin. Collectively, these results demonstrate a molecular mechanism whereby a membrane receptor can directly promote cytoskeletal assembly.

Copyright 2001 Academic Press.

PMID:
11418000
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk