Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 19

1.

The genome folding mechanism in yeast.

Kimura H, Shimooka Y, Nishikawa J, Miura O, Sugiyama S, Yamada S, Ohyama T.

J Biochem. 2013 Aug;154(2):137-47. doi: 10.1093/jb/mvt033. Epub 2013 Apr 24.

PMID:
23620598
2.

Genome-Wide Analysis of Nucleosome Positions, Occupancy, and Accessibility in Yeast: Nucleosome Mapping, High-Resolution Histone ChIP, and NCAM.

Rodriguez J, McKnight JN, Tsukiyama T.

Curr Protoc Mol Biol. 2014 Oct 1;108:21.28.1-16. doi: 10.1002/0471142727.mb2128s108. Review.

3.

The dynamics of chromosome replication in yeast.

Lucas IA, Raghuraman MK.

Curr Top Dev Biol. 2003;55:1-73. Review. No abstract available.

PMID:
12959193
4.

Principles of chromosomal organization: lessons from yeast.

Zimmer C, Fabre E.

J Cell Biol. 2011 Mar 7;192(5):723-33. doi: 10.1083/jcb.201010058. Review.

5.

Genome-wide "re"-modeling of nucleosome positions.

Sadeh R, Allis CD.

Cell. 2011 Oct 14;147(2):263-6. doi: 10.1016/j.cell.2011.09.042. Review.

6.

Advances in molecular methods to alter chromosomes and genome in the yeast Saccharomyces cerevisiae.

Sugiyama M, Yamagishi K, Kim YH, Kaneko Y, Nishizawa M, Harashima S.

Appl Microbiol Biotechnol. 2009 Oct;84(6):1045-52. doi: 10.1007/s00253-009-2144-z. Epub 2009 Aug 15. Review.

PMID:
19685240
7.

A genome-wide 3C-method for characterizing the three-dimensional architectures of genomes.

Duan Z, Andronescu M, Schutz K, Lee C, Shendure J, Fields S, Noble WS, Anthony Blau C.

Methods. 2012 Nov;58(3):277-88. doi: 10.1016/j.ymeth.2012.06.018. Epub 2012 Jul 6. Review.

8.

Unravelling global genome organization by 3C-seq.

Tanizawa H, Noma K.

Semin Cell Dev Biol. 2012 Apr;23(2):213-21. doi: 10.1016/j.semcdb.2011.11.003. Epub 2011 Nov 18. Review.

9.

Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system.

Duina AA, Miller ME, Keeney JB.

Genetics. 2014 May;197(1):33-48. doi: 10.1534/genetics.114.163188. Review.

10.

Basic principles of yeast genomics, a personal recollection.

Dujon B.

FEMS Yeast Res. 2015 Aug;15(5):fov047. doi: 10.1093/femsyr/fov047. Epub 2015 Jun 12. Review.

PMID:
26071597
11.

Chromatin fiber dynamics under tension and torsion.

Lavelle C, Victor JM, Zlatanova J.

Int J Mol Sci. 2010 Apr 12;11(4):1557-79. doi: 10.3390/ijms11041557. Review.

12.

Genome-wide views of chromatin structure.

Rando OJ, Chang HY.

Annu Rev Biochem. 2009;78:245-71. doi: 10.1146/annurev.biochem.78.071107.134639. Review.

13.

Principles of chromatin organization in yeast: relevance of polymer models to describe nuclear organization and dynamics.

Wang R, Mozziconacci J, Bancaud A, Gadal O.

Curr Opin Cell Biol. 2015 Jun;34:54-60. doi: 10.1016/j.ceb.2015.04.004. Epub 2015 May 15. Review.

14.

[Spatial organization of interphase chromosomes and the role of chromatin fiber dynamycs in the positioning of genome elements].

Gushchanskaya ES, Gavrilov AA, Razin SV.

Mol Biol (Mosk). 2014 May-Jun;48(3):386-94. Review. Russian.

PMID:
25831887
15.

Revisiting higher-order and large-scale chromatin organization.

Bian Q, Belmont AS.

Curr Opin Cell Biol. 2012 Jun;24(3):359-66. doi: 10.1016/j.ceb.2012.03.003. Epub 2012 Mar 27. Review.

16.

Two ways to fold the genome during the cell cycle: insights obtained with chromosome conformation capture.

Dekker J.

Epigenetics Chromatin. 2014 Nov 25;7(1):25. doi: 10.1186/1756-8935-7-25. eCollection 2014. Review.

17.

Functional organisation of the genome during interphase.

Pombo A, Branco MR.

Curr Opin Genet Dev. 2007 Oct;17(5):451-5. Epub 2007 Oct 24. Review.

PMID:
17920259
18.

Transcription as a force partitioning the eukaryotic genome.

Zirkel A, Papantonis A.

Biol Chem. 2014 Nov 1;395(11):1301-5. doi: 10.1515/hsz-2014-0196. Review.

PMID:
25205722
19.

Domesticated DNA transposon proteins mediate retrotransposon control.

O'Donnell KA, Boeke JD.

Cell Res. 2008 Mar;18(3):331-3. doi: 10.1038/cr.2008.34. Review. No abstract available.

Items per page

Supplemental Content

Write to the Help Desk