Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 48

Related Articles by Review for PubMed (Select 19836413)

1.

Leptin and the systems neuroscience of meal size control.

Grill HJ.

Front Neuroendocrinol. 2010 Jan;31(1):61-78. doi: 10.1016/j.yfrne.2009.10.005. Epub 2009 Oct 28. Review.

2.
3.

Leptin modulation of peripheral controls of meal size.

Moran TH, Aja S, Ladenheim EE.

Physiol Behav. 2006 Nov 30;89(4):511-6. Epub 2006 Jun 2. Review.

PMID:
16735044
4.

Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin.

Peters JH, Simasko SM, Ritter RC.

Physiol Behav. 2006 Nov 30;89(4):477-85. Epub 2006 Jul 26. Review.

PMID:
16872644
5.

Peptide signals regulating food intake and energy homeostasis.

Blevins JE, Schwartz MW, Baskin DG.

Can J Physiol Pharmacol. 2002 May;80(5):396-406. Review.

PMID:
12056545
6.

Integrative capacity of the caudal brainstem in the control of food intake.

Schwartz GJ.

Philos Trans R Soc Lond B Biol Sci. 2006 Jul 29;361(1471):1275-80. Review.

7.

Hypothalamic-brainstem circuits controlling eating.

Blevins JE, Baskin DG.

Forum Nutr. 2010;63:133-40. doi: 10.1159/000264401. Epub 2009 Nov 27. Review.

PMID:
19955781
8.

Brainstem mechanisms integrating gut-derived satiety signals and descending forebrain information in the control of meal size.

Berthoud HR, Sutton GM, Townsend RL, Patterson LM, Zheng H.

Physiol Behav. 2006 Nov 30;89(4):517-24. Epub 2006 Sep 25. Review.

PMID:
16996546
9.

Peripheral and central signals in the control of eating in normal, obese and binge-eating human subjects.

Hellström PM, Geliebter A, Näslund E, Schmidt PT, Yahav EK, Hashim SA, Yeomans MR.

Br J Nutr. 2004 Aug;92 Suppl 1:S47-57. Review.

PMID:
15384323
10.

Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance.

Grill HJ, Hayes MR.

Cell Metab. 2012 Sep 5;16(3):296-309. doi: 10.1016/j.cmet.2012.06.015. Epub 2012 Aug 16. Review.

11.
12.

Short-term receptor trafficking in the dorsal vagal complex: an overview.

Browning KN, Travagli RA.

Auton Neurosci. 2006 Jun 30;126-127:2-8. Epub 2006 Mar 6. Review.

13.

Functional heterogeneity of arcuate nucleus pro-opiomelanocortin neurons: implications for diverging melanocortin pathways.

Sohn JW, Williams KW.

Mol Neurobiol. 2012 Apr;45(2):225-33. doi: 10.1007/s12035-012-8240-6. Epub 2012 Feb 12. Review.

14.

The hypothalamus and the control of energy homeostasis: different circuits, different purposes.

Williams G, Bing C, Cai XJ, Harrold JA, King PJ, Liu XH.

Physiol Behav. 2001 Nov-Dec;74(4-5):683-701. Review.

PMID:
11790431
15.

Insulin and leptin: dual adiposity signals to the brain for the regulation of food intake and body weight.

Baskin DG, Figlewicz Lattemann D, Seeley RJ, Woods SC, Porte D Jr, Schwartz MW.

Brain Res. 1999 Nov 27;848(1-2):114-23. Review.

PMID:
10612703
16.

Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin.

Elmquist JK.

Physiol Behav. 2001 Nov-Dec;74(4-5):703-8. Review.

PMID:
11790432
17.
18.

A tale of two endings: modulation of satiation by NMDA receptors on or near central and peripheral vagal afferent terminals.

Ritter RC.

Physiol Behav. 2011 Nov 30;105(1):94-9. doi: 10.1016/j.physbeh.2011.02.042. Epub 2011 Mar 5. Review.

19.

Gut-derived signaling molecules and vagal afferents in the control of glucose and energy homeostasis.

Thorens B, Larsen PJ.

Curr Opin Clin Nutr Metab Care. 2004 Jul;7(4):471-8. Review.

PMID:
15192452
20.

Neuroendocrine control of food intake.

Valassi E, Scacchi M, Cavagnini F.

Nutr Metab Cardiovasc Dis. 2008 Feb;18(2):158-68. Epub 2007 Dec 3. Review.

PMID:
18061414
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk