Format

Send to:

Choose Destination
See comment in PubMed Commons below
Opt Express. 2007 Oct 17;15(21):13957-64.

Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors.

Abstract

We report an experimental demonstration of the distribution of time-bin entangled photon pairs over 100 km of optical fiber. In our experiment, 1.5-mum non-degenerated time-bin entangled photon pairs were generated with a periodically poled lithium niobate (PPLN) waveguide by using the parametric down conversion process. Combining this approach with ultra-low-loss filters to eliminate the pump light and separate signal and idler photons, we obtained an efficient entangled photon pair source. To detect the photons, we used single-photon detectors based on frequency up-conversion. These detectors operated in a non-gated mode so that we could use a pulse stream of time correlated entangled photon pairs at a high repetition frequency (1 GHz). Using these elements, we distributed time-bin entangled photon pairs over 100 km of dispersion shifted fiber and performed a two-photon interference experiment. We obtained a coincidence fringe of 81.6% visibility without subtracting any background noise, such as accidental coincidence or dark count, which was good enough to violate Bell's inequality. Thus, we successfully distributed time-bin entangled photon pairs over 100 km.

PMID:
19550669
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk