Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 15

1.

Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.

Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM.

Nature. 2009 Apr 16;458(7240):872-6. doi: 10.1038/nature07872.

PMID:
19370030
2.

Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons.

Terrones M.

ACS Nano. 2010 Apr 27;4(4):1775-81. doi: 10.1021/nn1006607. Review.

PMID:
20420468
3.

Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials.

Compton OC, Nguyen ST.

Small. 2010 Mar 22;6(6):711-23. doi: 10.1002/smll.200901934. Review.

PMID:
20225186
4.

Carbon-based electronics.

Avouris P, Chen Z, Perebeinos V.

Nat Nanotechnol. 2007 Oct;2(10):605-15. doi: 10.1038/nnano.2007.300. Epub 2007 Sep 30. Review.

PMID:
18654384
5.

Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons.

Yu SS, Zheng WT.

Nanoscale. 2010 Jul;2(7):1069-82. doi: 10.1039/c0nr00002g. Epub 2010 May 11. Review.

PMID:
20648331
6.

Graphene edges: a review of their fabrication and characterization.

Jia X, Campos-Delgado J, Terrones M, Meunier V, Dresselhaus MS.

Nanoscale. 2011 Jan;3(1):86-95. doi: 10.1039/c0nr00600a. Epub 2010 Nov 22. Review.

PMID:
21103548
7.

New routes to graphene, graphene oxide and their related applications.

Zhu Y, James DK, Tour JM.

Adv Mater. 2012 Sep 18;24(36):4924-55. doi: 10.1002/adma.201202321. Epub 2012 Aug 20. Review.

PMID:
22903803
8.

Functional composite materials based on chemically converted graphene.

Bai H, Li C, Shi G.

Adv Mater. 2011 Mar 4;23(9):1089-115. doi: 10.1002/adma.201003753. Epub 2011 Jan 7. Review.

PMID:
21360763
9.

Thinnest two-dimensional nanomaterial-graphene for solar energy.

Hu YH, Wang H, Hu B.

ChemSusChem. 2010 Jul 19;3(7):782-96. doi: 10.1002/cssc.201000061. Review.

PMID:
20544792
10.

Toward ubiquitous environmental gas sensors-capitalizing on the promise of graphene.

Ratinac KR, Yang W, Ringer SP, Braet F.

Environ Sci Technol. 2010 Feb 15;44(4):1167-76. doi: 10.1021/es902659d. Review.

PMID:
20099803
11.

Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics.

Eda G, Chhowalla M.

Adv Mater. 2010 Jun 11;22(22):2392-415. doi: 10.1002/adma.200903689. Review.

PMID:
20432408
12.

Graphene-based materials in electrochemistry.

Chen D, Tang L, Li J.

Chem Soc Rev. 2010 Aug;39(8):3157-80. doi: 10.1039/b923596e. Epub 2010 Jun 29. Review.

PMID:
20589275
13.

Electronic conduction in polymers, carbon nanotubes and graphene.

Kaiser AB, Skákalová V.

Chem Soc Rev. 2011 Jul;40(7):3786-801. doi: 10.1039/c0cs00103a. Epub 2011 Mar 16. Review.

PMID:
21412520
14.

Electrochemistry of graphene: new horizons for sensing and energy storage.

Pumera M.

Chem Rec. 2009;9(4):211-23. doi: 10.1002/tcr.200900008. Review.

PMID:
19739147
15.

The chemistry of graphene oxide.

Dreyer DR, Park S, Bielawski CW, Ruoff RS.

Chem Soc Rev. 2010 Jan;39(1):228-40. doi: 10.1039/b917103g. Epub 2009 Nov 3. Review.

PMID:
20023850
Items per page

Supplemental Content

Write to the Help Desk