Send to:

Choose Destination

Related Articles by Review for PubMed (Select 17060381)

See comment in PubMed Commons below
Circulation. 2006 Nov 7;114(19):2047-55. Epub 2006 Oct 23.

Impaired regulatory T-cell response and enhanced atherosclerosis in the absence of inducible costimulatory molecule.

Author information

  • 1Immunology Division, Brigham and Women's Hospital, and Harvard Medical School, Boston, Mass 02115, USA.



T-cell-mediated immunity contributes to the pathogenesis of atherosclerosis, but little is known about how these responses are regulated. We explored the influence of the inducible costimulatory molecule (ICOS) on atherosclerosis and associated immune responses.


Bone marrow chimeras were generated by transplanting ICOS-deficient or wild-type bone marrow into irradiated atherosclerosis-prone, LDR receptor-deficient mice, and the chimeric mice were fed a high-cholesterol diet for 8 weeks. Compared with controls, mice transplanted with ICOS-deficient marrow had a 43% increase in the atherosclerotic burden, and importantly, their lesions had a 3-fold increase in CD4+ T cells, as well as increased macrophage, smooth muscle cell, and collagen content. CD4+ T cells from ICOS-deficient chimeras proliferated more and secreted more interferon-gamma and tumor necrosis factor-alpha than T cells from control mice, which suggests a lack of regulation. FoxP3+ regulatory T cells (Treg) were found to constitutively express high ICOS levels, which suggests a role for ICOS in Treg function. ICOS-deficient mice had decreased numbers of FoxP3+ Treg and impaired in vitro Treg suppressive function compared with control mice.


ICOS has a key role in regulation of atherosclerosis, through its effect on regulatory T-cell responses.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk