Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 27

Related Articles by Review for PubMed (Select 12372339)

1.

Overexpression of interleukin-15 induces skeletal muscle hypertrophy in vitro: implications for treatment of muscle wasting disorders.

Quinn LS, Anderson BG, Drivdahl RH, Alvarez B, Argilés JM.

Exp Cell Res. 2002 Oct 15;280(1):55-63.

PMID:
12372339
3.

Cellular mechanisms and local progenitor activation to regulate skeletal muscle mass.

Cassano M, Quattrocelli M, Crippa S, Perini I, Ronzoni F, Sampaolesi M.

J Muscle Res Cell Motil. 2009 Dec;30(7-8):243-53. doi: 10.1007/s10974-010-9204-y. Epub 2010 Mar 2. Review.

PMID:
20195710
4.

Type I insulin-like growth factor receptor signaling in skeletal muscle regeneration and hypertrophy.

Philippou A, Halapas A, Maridaki M, Koutsilieris M.

J Musculoskelet Neuronal Interact. 2007 Jul-Sep;7(3):208-18. Review.

5.

Alteration of somatotropic function by proinflammatory cytokines.

Frost RA, Lang CH.

J Anim Sci. 2004;82 E-Suppl:E100-109. Review.

6.

Waste management - cytokines, growth factors and cachexia.

Saini A, Al-Shanti N, Stewart CE.

Cytokine Growth Factor Rev. 2006 Dec;17(6):475-86. Epub 2006 Nov 22. Review. Erratum in: Cytokine Growth Factor Rev. 2007 Jun-Aug;18(3-4):345. Nasser, Al-Shanti [corrected to Al-Shanti, Nasser].

PMID:
17118696
7.

Regulation of insulin-like growth factor-I in skeletal muscle and muscle cells.

Frost RA, Lang CH.

Minerva Endocrinol. 2003 Mar;28(1):53-73. Review.

PMID:
12621363
8.

Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system.

Oksbjerg N, Gondret F, Vestergaard M.

Domest Anim Endocrinol. 2004 Oct;27(3):219-40. Review.

PMID:
15451071
9.

Insulin-like growth factor-I in muscle metabolism and myotherapies.

Singleton JR, Feldman EL.

Neurobiol Dis. 2001 Aug;8(4):541-54. Review.

PMID:
11493020
10.

The role of beta-adrenoceptor signaling in skeletal muscle: therapeutic implications for muscle wasting disorders.

Koopman R, Ryall JG, Church JE, Lynch GS.

Curr Opin Clin Nutr Metab Care. 2009 Nov;12(6):601-6. doi: 10.1097/MCO.0b013e3283318a25. Review.

PMID:
19741516
11.

Novel role for ß-adrenergic signalling in skeletal muscle growth, development and regeneration.

Ryall JG, Church JE, Lynch GS.

Clin Exp Pharmacol Physiol. 2010 Mar;37(3):397-401. doi: 10.1111/j.1440-1681.2009.05312.x. Epub 2009 Sep 28. Review.

PMID:
19793099
12.

Motion into mass: how does tension stimulate muscle growth?

Vandenburgh HH.

Med Sci Sports Exerc. 1987 Oct;19(5 Suppl):S142-9. Review.

PMID:
3316913
13.

The biological roles of exercise-induced cytokines: IL-6, IL-8, and IL-15.

Nielsen AR, Pedersen BK.

Appl Physiol Nutr Metab. 2007 Oct;32(5):833-9. Review.

PMID:
18059606
14.
15.

Gene therapy for cardiac cachexia?

Rosenthal N, Musarò A.

Int J Cardiol. 2002 Sep;85(1):185-91. Review.

PMID:
12163223
16.
17.

Role of microRNAs in skeletal muscle hypertrophy.

Hitachi K, Tsuchida K.

Front Physiol. 2014 Jan 16;4:408. doi: 10.3389/fphys.2013.00408. eCollection 2013. Review.

18.

β2-Adrenergic agonists and the treatment of skeletal muscle wasting disorders.

Joassard OR, Durieux AC, Freyssenet DG.

Int J Biochem Cell Biol. 2013 Oct;45(10):2309-21. doi: 10.1016/j.biocel.2013.06.025. Epub 2013 Jul 8. Review.

PMID:
23845739
19.

Neurohormonal factors in the development of catabolic/anabolic imbalance and cachexia.

Brink M, Anwar A, Delafontaine P.

Int J Cardiol. 2002 Sep;85(1):111-21, discussion 121-4. Review.

PMID:
12163215
20.

Role of cysteine and glutathione in signal transduction, immunopathology and cachexia.

Dröge W, Hack V, Breitkreutz R, Holm E, Shubinsky G, Schmid E, Galter D.

Biofactors. 1998;8(1-2):97-102. Review.

PMID:
9699016
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk