Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 51

1.

Coordinated gene regulation in the initial phase of salt stress adaptation.

Vanacloig-Pedros E, Bets-Plasencia C, Pascual-Ahuir A, Proft M.

J Biol Chem. 2015 Apr 17;290(16):10163-75. doi: 10.1074/jbc.M115.637264. Epub 2015 Mar 5.

2.

Signaling of chloroquine-induced stress in the yeast Saccharomyces cerevisiae requires the Hog1 and Slt2 mitogen-activated protein kinase pathways.

Baranwal S, Azad GK, Singh V, Tomar RS.

Antimicrob Agents Chemother. 2014 Sep;58(9):5552-66. doi: 10.1128/AAC.02393-13. Epub 2014 Jul 14.

3.

The yeast AMPK homolog SNF1 regulates acetyl coenzyme A homeostasis and histone acetylation.

Zhang M, Galdieri L, Vancura A.

Mol Cell Biol. 2013 Dec;33(23):4701-17. doi: 10.1128/MCB.00198-13. Epub 2013 Sep 30.

4.

The Hog1 stress-activated protein kinase targets nucleoporins to control mRNA export upon stress.

Regot S, de Nadal E, Rodríguez-Navarro S, González-Novo A, Pérez-Fernandez J, Gadal O, Seisenbacher G, Ammerer G, Posas F.

J Biol Chem. 2013 Jun 14;288(24):17384-98. doi: 10.1074/jbc.M112.444042. Epub 2013 May 3. Erratum in: J Biol Chem. 2015 Jan 23;290(4):2301.

5.

Deciphering dynamic dose responses of natural promoters and single cis elements upon osmotic and oxidative stress in yeast.

Dolz-Edo L, Rienzo A, Poveda-Huertes D, Pascual-Ahuir A, Proft M.

Mol Cell Biol. 2013 Jun;33(11):2228-40. doi: 10.1128/MCB.00240-13. Epub 2013 Mar 25.

6.

Activator and repressor functions of the Mot3 transcription factor in the osmostress response of Saccharomyces cerevisiae.

Martínez-Montañés F, Rienzo A, Poveda-Huertes D, Pascual-Ahuir A, Proft M.

Eukaryot Cell. 2013 May;12(5):636-47. doi: 10.1128/EC.00037-13. Epub 2013 Feb 22.

7.

Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity.

Su C, Lu Y, Liu H.

Mol Biol Cell. 2013 Feb;24(3):385-97. doi: 10.1091/mbc.E12-06-0477. Epub 2012 Nov 21.

8.

The filamentous growth MAPK Pathway Responds to Glucose Starvation Through the Mig1/2 transcriptional repressors in Saccharomyces cerevisiae.

Karunanithi S, Cullen PJ.

Genetics. 2012 Nov;192(3):869-87. doi: 10.1534/genetics.112.142661. Epub 2012 Aug 17.

9.

A framework for mapping, visualisation and automatic model creation of signal-transduction networks.

Tiger CF, Krause F, Cedersund G, Palmér R, Klipp E, Hohmann S, Kitano H, Krantz M.

Mol Syst Biol. 2012 Apr 24;8:578. doi: 10.1038/msb.2012.12.

10.

Two cation transporters Ena1 and Nha1 cooperatively modulate ion homeostasis, antifungal drug resistance, and virulence of Cryptococcus neoformans via the HOG pathway.

Jung KW, Strain AK, Nielsen K, Jung KH, Bahn YS.

Fungal Genet Biol. 2012 Apr;49(4):332-45. doi: 10.1016/j.fgb.2012.02.001. Epub 2012 Feb 11.

11.

The stress response factors Yap6, Cin5, Phd1, and Skn7 direct targeting of the conserved co-repressor Tup1-Ssn6 in S. cerevisiae.

Hanlon SE, Rizzo JM, Tatomer DC, Lieb JD, Buck MJ.

PLoS One. 2011 Apr 28;6(4):e19060. doi: 10.1371/journal.pone.0019060.

12.

Alkali metal cation transport and homeostasis in yeasts.

Ariño J, Ramos J, Sychrová H.

Microbiol Mol Biol Rev. 2010 Mar;74(1):95-120. doi: 10.1128/MMBR.00042-09. Review.

13.

Mitochondrial function is an inducible determinant of osmotic stress adaptation in yeast.

Pastor MM, Proft M, Pascual-Ahuir A.

J Biol Chem. 2009 Oct 30;284(44):30307-17. doi: 10.1074/jbc.M109.050682. Epub 2009 Aug 31.

14.

Remodeling of global transcription patterns of Cryptococcus neoformans genes mediated by the stress-activated HOG signaling pathways.

Ko YJ, Yu YM, Kim GB, Lee GW, Maeng PJ, Kim S, Floyd A, Heitman J, Bahn YS.

Eukaryot Cell. 2009 Aug;8(8):1197-217. doi: 10.1128/EC.00120-09. Epub 2009 Jun 19.

15.

The histone deacetylase Rpd3p is required for transient changes in genomic expression in response to stress.

Alejandro-Osorio AL, Huebert DJ, Porcaro DT, Sonntag ME, Nillasithanukroh S, Will JL, Gasch AP.

Genome Biol. 2009;10(5):R57. doi: 10.1186/gb-2009-10-5-r57. Epub 2009 May 26.

16.

CaZF, a plant transcription factor functions through and parallel to HOG and calcineurin pathways in Saccharomyces cerevisiae to provide osmotolerance.

Jain D, Roy N, Chattopadhyay D.

PLoS One. 2009;4(4):e5154. doi: 10.1371/journal.pone.0005154. Epub 2009 Apr 13. Erratum in: PLoS One. 2009;4(6). doi: 10.1371/annotation/da3ad6f8-bc52-494d-9472-dd96c387c8fd.

17.

Structure and function of a transcriptional network activated by the MAPK Hog1.

Capaldi AP, Kaplan T, Liu Y, Habib N, Regev A, Friedman N, O'Shea EK.

Nat Genet. 2008 Nov;40(11):1300-6. doi: 10.1038/ng.235. Epub 2008 Oct 19.

18.

Yeast translational response to high salinity: global analysis reveals regulation at multiple levels.

Melamed D, Pnueli L, Arava Y.

RNA. 2008 Jul;14(7):1337-51. doi: 10.1261/rna.864908. Epub 2008 May 21.

19.

Function and regulation of the Saccharomyces cerevisiae ENA sodium ATPase system.

Ruiz A, Ariño J.

Eukaryot Cell. 2007 Dec;6(12):2175-83. Epub 2007 Oct 19. No abstract available.

20.

Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae.

Chen RE, Thorner J.

Biochim Biophys Acta. 2007 Aug;1773(8):1311-40. Epub 2007 May 22. Review.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk