Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 79

1.

Regulatory roles of phosphorylation in model and pathogenic fungi.

Albataineh MT, Kadosh D.

Med Mycol. 2016 May 1;54(4):333-52. doi: 10.1093/mmy/myv098. Epub 2015 Dec 24.

PMID:
26705834
2.

The Saccharomyces cerevisiae AMPK, Snf1, Negatively Regulates the Hog1 MAPK Pathway in ER Stress Response.

Mizuno T, Masuda Y, Irie K.

PLoS Genet. 2015 Sep 22;11(9):e1005491. doi: 10.1371/journal.pgen.1005491. eCollection 2015.

3.

Systematic Global Analysis of Genes Encoding Protein Phosphatases in Aspergillus fumigatus.

Winkelströter LK, Dolan SK, Fernanda Dos Reis T, Bom VL, Alves de Castro P, Hagiwara D, Alowni R, Jones GW, Doyle S, Brown NA, Goldman GH.

G3 (Bethesda). 2015 May 5;5(7):1525-39. doi: 10.1534/g3.115.016766.

4.

Phosphoproteomic analyses reveal novel cross-modulation mechanisms between two signaling pathways in yeast.

Vaga S, Bernardo-Faura M, Cokelaer T, Maiolica A, Barnes CA, Gillet LC, Hegemann B, van Drogen F, Sharifian H, Klipp E, Peter M, Saez-Rodriguez J, Aebersold R.

Mol Syst Biol. 2014 Dec 9;10:767. doi: 10.15252/msb.20145112.

5.

Metabolic respiration induces AMPK- and Ire1p-dependent activation of the p38-Type HOG MAPK pathway.

Adhikari H, Cullen PJ.

PLoS Genet. 2014 Oct 30;10(10):e1004734. doi: 10.1371/journal.pgen.1004734. eCollection 2014 Oct.

6.

Casein kinase II regulation of the Hot1 transcription factor promotes stochastic gene expression.

Burns LT, Wente SR.

J Biol Chem. 2014 Jun 20;289(25):17668-79. doi: 10.1074/jbc.M114.561217. Epub 2014 May 9.

7.

Molecular mechanisms of hypoxic responses via unique roles of Ras1, Cdc24 and Ptp3 in a human fungal pathogen Cryptococcus neoformans.

Chang YC, Khanal Lamichhane A, Garraffo HM, Walter PJ, Leerkes M, Kwon-Chung KJ.

PLoS Genet. 2014 Apr 24;10(4):e1004292. doi: 10.1371/journal.pgen.1004292. eCollection 2014 Apr.

8.

Distinct and redundant roles of protein tyrosine phosphatases Ptp1 and Ptp2 in governing the differentiation and pathogenicity of Cryptococcus neoformans.

Lee KT, Byun HJ, Jung KW, Hong J, Cheong E, Bahn YS.

Eukaryot Cell. 2014 Jun;13(6):796-812. doi: 10.1128/EC.00069-14. Epub 2014 Apr 11.

9.

Activation of salt shock response leads to solubilisation of mutant huntingtin in Saccharomyces cerevisiae.

Saleh AA, Bhadra AK, Roy I.

Cell Stress Chaperones. 2014 Sep;19(5):667-73. doi: 10.1007/s12192-014-0492-9. Epub 2014 Jan 26.

11.

Osmostress-induced cell volume loss delays yeast Hog1 signaling by limiting diffusion processes and by Hog1-specific effects.

Babazadeh R, Adiels CB, Smedh M, Petelenz-Kurdziel E, Goksör M, Hohmann S.

PLoS One. 2013 Nov 20;8(11):e80901. doi: 10.1371/journal.pone.0080901. eCollection 2013.

12.
13.
14.

Genetic networks inducing invasive growth in Saccharomyces cerevisiae identified through systematic genome-wide overexpression.

Shively CA, Eckwahl MJ, Dobry CJ, Mellacheruvu D, Nesvizhskii A, Kumar A.

Genetics. 2013 Apr;193(4):1297-310. doi: 10.1534/genetics.112.147876. Epub 2013 Feb 14.

15.

Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity.

Su C, Lu Y, Liu H.

Mol Biol Cell. 2013 Feb;24(3):385-97. doi: 10.1091/mbc.E12-06-0477. Epub 2012 Nov 21.

16.

Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast.

Schaber J, Baltanas R, Bush A, Klipp E, Colman-Lerner A.

Mol Syst Biol. 2012;8:622. doi: 10.1038/msb.2012.53.

17.

Response to hyperosmotic stress.

Saito H, Posas F.

Genetics. 2012 Oct;192(2):289-318. doi: 10.1534/genetics.112.140863. Review.

18.

Hog1 controls global reallocation of RNA Pol II upon osmotic shock in Saccharomyces cerevisiae.

Cook KE, O'Shea EK.

G3 (Bethesda). 2012 Sep;2(9):1129-36. doi: 10.1534/g3.112.003251. Epub 2012 Sep 1.

19.

The Hog1 SAPK controls the Rtg1/Rtg3 transcriptional complex activity by multiple regulatory mechanisms.

Ruiz-Roig C, Noriega N, Duch A, Posas F, de Nadal E.

Mol Biol Cell. 2012 Nov;23(21):4286-96. doi: 10.1091/mbc.E12-04-0289. Epub 2012 Sep 5.

20.

A framework for mapping, visualisation and automatic model creation of signal-transduction networks.

Tiger CF, Krause F, Cedersund G, Palmér R, Klipp E, Hohmann S, Kitano H, Krantz M.

Mol Syst Biol. 2012 Apr 24;8:578. doi: 10.1038/msb.2012.12.

Items per page

Supplemental Content

Write to the Help Desk