Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 136

Cited In for PubMed (Select 7643193)

1.

Brain pathways to recovery from alcohol dependence.

Cui C, Noronha A, Warren KR, Koob GF, Sinha R, Thakkar M, Matochik J, Crews FT, Chandler LJ, Pfefferbaum A, Becker HC, Lovinger D, Everitt BJ, Egli M, Mandyam CD, Fein G, Potenza MN, Harris RA, Grant KA, Roberto M, Meyerhoff DJ, Sullivan EV.

Alcohol. 2015 Aug;49(5):435-52. doi: 10.1016/j.alcohol.2015.04.006. Epub 2015 May 14.

PMID:
26074423
2.

The darkness within: individual differences in stress.

Koob GF.

Cerebrum. 2015 Apr 1;2015:4. eCollection 2015 Mar-Apr. No abstract available.

3.

Corticotropin-releasing hormone drives anandamide hydrolysis in the amygdala to promote anxiety.

Gray JM, Vecchiarelli HA, Morena M, Lee TT, Hermanson DJ, Kim AB, McLaughlin RJ, Hassan KI, Kühne C, Wotjak CT, Deussing JM, Patel S, Hill MN.

J Neurosci. 2015 Mar 4;35(9):3879-92. doi: 10.1523/JNEUROSCI.2737-14.2015.

PMID:
25740517
4.

The dark side of emotion: the addiction perspective.

Koob GF.

Eur J Pharmacol. 2015 Apr 15;753:73-87. doi: 10.1016/j.ejphar.2014.11.044. Epub 2015 Jan 9.

PMID:
25583178
5.

The central amygdala as an integrative hub for anxiety and alcohol use disorders.

Gilpin NW, Herman MA, Roberto M.

Biol Psychiatry. 2015 May 15;77(10):859-69. doi: 10.1016/j.biopsych.2014.09.008. Epub 2014 Sep 22. Review.

PMID:
25433901
6.

VTA CRF neurons mediate the aversive effects of nicotine withdrawal and promote intake escalation.

Grieder TE, Herman MA, Contet C, Tan LA, Vargas-Perez H, Cohen A, Chwalek M, Maal-Bared G, Freiling J, Schlosburg JE, Clarke L, Crawford E, Koebel P, Repunte-Canonigo V, Sanna PP, Tapper AR, Roberto M, Kieffer BL, Sawchenko PE, Koob GF, van der Kooy D, George O.

Nat Neurosci. 2014 Dec;17(12):1751-8. doi: 10.1038/nn.3872. Epub 2014 Nov 17.

7.

Polymorphism in the corticotropin-releasing factor receptor 1 (CRF1-R) gene plays a role in shaping the high anxious phenotype of Marchigian Sardinian alcohol-preferring (msP) rats.

Cippitelli A, Ayanwuyi LO, Barbier E, Domi E, Lerma-Cabrera JM, Carvajal F, Scuppa G, Li H, Ubaldi M, Heilig M, Roberto M, Ciccocioppo R.

Psychopharmacology (Berl). 2015 Mar;232(6):1083-93. doi: 10.1007/s00213-014-3743-7. Epub 2014 Sep 27.

PMID:
25260340
8.

Drug withdrawal conceptualized as a stressor.

Chartoff EH, Carlezon WA Jr.

Behav Pharmacol. 2014 Sep;25(5-6):473-92. doi: 10.1097/FBP.0000000000000080. Review.

PMID:
25083570
9.

Prevention of alcohol-heightened aggression by CRF-R1 antagonists in mice: critical role for DRN-PFC serotonin pathway.

Quadros IM, Hwa LS, Shimamoto A, Carlson J, DeBold JF, Miczek KA.

Neuropsychopharmacology. 2014 Nov;39(12):2874-83. doi: 10.1038/npp.2014.139. Epub 2014 Jun 11.

PMID:
24917195
10.

Dopamine D2 receptor desensitization by dopamine or corticotropin releasing factor in ventral tegmental area neurons is associated with increased glutamate release.

Nimitvilai S, Herman M, You C, Arora DS, McElvain MA, Roberto M, Brodie MS.

Neuropharmacology. 2014 Jul;82:28-40. doi: 10.1016/j.neuropharm.2014.03.006. Epub 2014 Mar 19.

11.

Role of the kappa-opioid receptor system in stress-induced reinstatement of nicotine seeking in rats.

Grella SL, Funk D, Coen K, Li Z, Lê AD.

Behav Brain Res. 2014 May 15;265:188-97. doi: 10.1016/j.bbr.2014.02.029. Epub 2014 Feb 28.

12.

Corticotropin releasing factor: a key role in the neurobiology of addiction.

Zorrilla EP, Logrip ML, Koob GF.

Front Neuroendocrinol. 2014 Apr;35(2):234-44. doi: 10.1016/j.yfrne.2014.01.001. Epub 2014 Jan 20. Review.

13.

Direct targeting of peptidergic amygdalar neurons by noradrenergic afferents: linking stress-integrative circuitry.

Kravets JL, Reyes BA, Unterwald EM, Van Bockstaele EJ.

Brain Struct Funct. 2015 Jan;220(1):541-58. doi: 10.1007/s00429-013-0674-8. Epub 2013 Nov 23.

PMID:
24271021
14.

Predator odor stress alters corticotropin-releasing factor-1 receptor (CRF1R)-dependent behaviors in rats.

Roltsch EA, Baynes BB, Mayeux JP, Whitaker AM, Baiamonte BA, Gilpin NW.

Neuropharmacology. 2014 Apr;79:83-9. doi: 10.1016/j.neuropharm.2013.11.005. Epub 2013 Nov 20.

15.

Inhibition of corticotropin releasing factor expression in the central nucleus of the amygdala attenuates stress-induced behavioral and endocrine responses.

Callahan LB, Tschetter KE, Ronan PJ.

Front Neurosci. 2013 Oct 29;7:195. doi: 10.3389/fnins.2013.00195. eCollection 2013.

16.

Nociceptin/orphanin FQ decreases glutamate transmission and blocks ethanol-induced effects in the central amygdala of naive and ethanol-dependent rats.

Kallupi M, Varodayan FP, Oleata CS, Correia D, Luu G, Roberto M.

Neuropsychopharmacology. 2014 Apr;39(5):1081-92. doi: 10.1038/npp.2013.308. Epub 2013 Oct 30.

17.

Effects of voluntary alcohol drinking on corticotropin-releasing factor and preprodynorphin mRNA levels in the central amygdala of Sardinian alcohol-preferring rats.

Zhou Y, Colombo G, Gessa GL, Kreek MJ.

Neurosci Lett. 2013 Oct 25;554:110-4. doi: 10.1016/j.neulet.2013.08.071. Epub 2013 Sep 8.

18.

Addiction is a Reward Deficit and Stress Surfeit Disorder.

Koob GF.

Front Psychiatry. 2013 Aug 1;4:72. doi: 10.3389/fpsyt.2013.00072. eCollection 2013.

19.

Emerging role for corticotropin releasing factor signaling in the bed nucleus of the stria terminalis at the intersection of stress and reward.

Silberman Y, Winder DG.

Front Psychiatry. 2013 May 29;4:42. doi: 10.3389/fpsyt.2013.00042. eCollection 2013.

20.

CRF-CRF1 receptor system in the central and basolateral nuclei of the amygdala differentially mediates excessive eating of palatable food.

Iemolo A, Blasio A, St Cyr SA, Jiang F, Rice KC, Sabino V, Cottone P.

Neuropsychopharmacology. 2013 Nov;38(12):2456-66. doi: 10.1038/npp.2013.147. Epub 2013 Jun 10.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk