Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 46

Cited In for PubMed (Select 22522928)

1.

Brain-computer interface control along instructed paths.

Sadtler PT, Ryu SI, Tyler-Kabara EC, Yu BM, Batista AP.

J Neural Eng. 2015 Feb;12(1):016015. doi: 10.1088/1741-2560/12/1/016015. Epub 2015 Jan 21.

PMID:
25605498
2.

"Messing with the mind": evolutionary challenges to human brain augmentation.

Saniotis A, Henneberg M, Kumaratilake J, Grantham JP.

Front Syst Neurosci. 2014 Sep 30;8:152. doi: 10.3389/fnsys.2014.00152. eCollection 2014.

3.

Degraded EEG decoding of wrist movements in absence of kinaesthetic feedback.

Galán F, Baker MR, Alter K, Baker SN.

Hum Brain Mapp. 2015 Feb;36(2):643-54. doi: 10.1002/hbm.22653. Epub 2014 Oct 12.

4.

Neural coding for effective rehabilitation.

Hu X, Wang Y, Zhao T, Gunduz A.

Biomed Res Int. 2014;2014:286505. doi: 10.1155/2014/286505. Epub 2014 Sep 2.

5.

Joint cross-correlation analysis reveals complex, time-dependent functional relationship between cortical neurons and arm electromyograms.

Zhuang KZ, Lebedev MA, Nicolelis MA.

J Neurophysiol. 2014 Dec 1;112(11):2865-87. doi: 10.1152/jn.00031.2013. Epub 2014 Sep 10.

PMID:
25210153
6.

Decoding methods for neural prostheses: where have we reached?

Li Z.

Front Syst Neurosci. 2014 Jul 16;8:129. doi: 10.3389/fnsys.2014.00129. eCollection 2014. Review.

7.

Comparing temporal aspects of visual, tactile, and microstimulation feedback for motor control.

Godlove JM, Whaite EO, Batista AP.

J Neural Eng. 2014 Aug;11(4):046025. doi: 10.1088/1741-2560/11/4/046025. Epub 2014 Jul 16.

PMID:
25028989
8.

Brain-machine interfaces can accelerate clarification of the principal mysteries and real plasticity of the brain.

Sakurai Y.

Front Syst Neurosci. 2014 May 26;8:104. doi: 10.3389/fnsys.2014.00104. eCollection 2014.

9.

Multimodal decoding and congruent sensory information enhance reaching performance in subjects with cervical spinal cord injury.

Corbett EA, Sachs NA, Körding KP, Perreault EJ.

Front Neurosci. 2014 May 23;8:123. doi: 10.3389/fnins.2014.00123. eCollection 2014.

10.

A confidence metric for using neurobiological feedback in actor-critic reinforcement learning based brain-machine interfaces.

Prins NW, Sanchez JC, Prasad A.

Front Neurosci. 2014 May 26;8:111. doi: 10.3389/fnins.2014.00111. eCollection 2014.

11.

Closed-loop control of spinal cord stimulation to restore hand function after paralysis.

Zimmermann JB, Jackson A.

Front Neurosci. 2014 May 19;8:87. doi: 10.3389/fnins.2014.00087. eCollection 2014.

12.

Decoding of the spike timing of primary afferents during voluntary arm movements in monkeys.

Umeda T, Watanabe H, Sato MA, Kawato M, Isa T, Nishimura Y.

Front Neurosci. 2014 May 9;8:97. doi: 10.3389/fnins.2014.00097. eCollection 2014.

13.

A training platform for many-dimensional prosthetic devices using a virtual reality environment.

Putrino D, Wong YT, Weiss A, Pesaran B.

J Neurosci Methods. 2015 Apr 15;244:68-77. doi: 10.1016/j.jneumeth.2014.03.010. Epub 2014 Apr 13.

14.

Intention estimation in brain-machine interfaces.

Fan JM, Nuyujukian P, Kao JC, Chestek CA, Ryu SI, Shenoy KV.

J Neural Eng. 2014 Feb;11(1):016004.

15.

Pre-frontal control of closed-loop limbic neurostimulation by rodents using a brain-computer interface.

Widge AS, Moritz CT.

J Neural Eng. 2014 Apr;11(2):024001. doi: 10.1088/1741-2560/11/2/024001. Epub 2014 Mar 10.

16.

Abiotic-biotic characterization of Pt/Ir microelectrode arrays in chronic implants.

Prasad A, Xue QS, Dieme R, Sankar V, Mayrand RC, Nishida T, Streit WJ, Sanchez JC.

Front Neuroeng. 2014 Feb 4;7:2. doi: 10.3389/fneng.2014.00002. eCollection 2014.

17.

A cortical-spinal prosthesis for targeted limb movement in paralysed primate avatars.

Shanechi MM, Hu RC, Williams ZM.

Nat Commun. 2014;5:3237. doi: 10.1038/ncomms4237.

18.

Collaborative approach in the development of high-performance brain-computer interfaces for a neuroprosthetic arm: translation from animal models to human control.

Collinger JL, Kryger MA, Barbara R, Betler T, Bowsher K, Brown EH, Clanton ST, Degenhart AD, Foldes ST, Gaunt RA, Gyulai FE, Harchick EA, Harrington D, Helder JB, Hemmes T, Johannes MS, Katyal KD, Ling GS, McMorland AJ, Palko K, Para MP, Scheuermann J, Schwartz AB, Skidmore ER, Solzbacher F, Srikameswaran AV, Swanson DP, Swetz S, Tyler-Kabara EC, Velliste M, Wang W, Weber DJ, Wodlinger B, Boninger ML.

Clin Transl Sci. 2014 Feb;7(1):52-9. doi: 10.1111/cts.12086. Epub 2013 Aug 27.

19.

Bayesian statistics: relevant for the brain?

Kording KP.

Curr Opin Neurobiol. 2014 Apr;25:130-3. doi: 10.1016/j.conb.2014.01.003. Epub 2014 Jan 24. Review.

20.

How thoughts give rise to action - conscious motor intention increases the excitability of target-specific motor circuits.

Zschorlich VR, Köhling R.

PLoS One. 2013 Dec 26;8(12):e83845. doi: 10.1371/journal.pone.0083845. eCollection 2013.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk