Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 45

1.

Characterization of internodal collecting lymphatic vessel function after surgical removal of an axillary lymph node in mice.

Kwon S, Price RE.

Biomed Opt Express. 2016 Mar 3;7(4):1100-15. doi: 10.1364/BOE.7.001100. eCollection 2016 Apr 1.

PMID:
27446639
2.

Role of hypoxia and vascular endothelial growth factors in lymphangiogenesis.

Morfoisse F, Renaud E, Hantelys F, Prats AC, Garmy-Susini B.

Mol Cell Oncol. 2015 May 27;2(4):e1024821. doi: 10.1080/23723556.2015.1024821. eCollection 2015 Oct-Dec. Review.

3.

Role of hypoxia and vascular endothelial growth factors in lymphangiogenesis.

Morfoisse F, Renaud E, Hantelys F, Prats AC, Garmy-Susini B.

Mol Cell Oncol. 2014 Aug 13;1(1):e29907. doi: 10.4161/mco.29907. eCollection 2014. Review.

4.

The Lymphatic Endothelial mCLCA1 Antibody Induces Proliferation and Growth of Lymph Node Lymphatic Sinuses.

Jordan-Williams KL, Ramanujam N, Farr AG, Ruddell A.

PLoS One. 2016 May 25;11(5):e0156079. doi: 10.1371/journal.pone.0156079. eCollection 2016.

5.

Emerging therapeutic targets in metastatic progression: A focus on breast cancer.

Li Z, Kang Y.

Pharmacol Ther. 2016 May;161:79-96. doi: 10.1016/j.pharmthera.2016.03.003. Epub 2016 Mar 19. Review.

PMID:
27000769
6.

VEGF-C and TGF-β reciprocally regulate mesenchymal stem cell commitment to differentiation into lymphatic endothelial or osteoblastic phenotypes.

Igarashi Y, Chosa N, Sawada S, Kondo H, Yaegashi T, Ishisaki A.

Int J Mol Med. 2016 Apr;37(4):1005-13. doi: 10.3892/ijmm.2016.2502. Epub 2016 Feb 25.

7.

Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination.

Le CP, Nowell CJ, Kim-Fuchs C, Botteri E, Hiller JG, Ismail H, Pimentel MA, Chai MG, Karnezis T, Rotmensz N, Renne G, Gandini S, Pouton CW, Ferrari D, Möller A, Stacker SA, Sloan EK.

Nat Commun. 2016 Mar 1;7:10634. doi: 10.1038/ncomms10634.

8.

The Lymphatic System in Disease Processes and Cancer Progression.

Padera TP, Meijer EF, Munn LL.

Annu Rev Biomed Eng. 2016 Jul 11;18:125-58. doi: 10.1146/annurev-bioeng-112315-031200. Epub 2016 Feb 5.

PMID:
26863922
9.

A novel approach to the discovery of anti-tumor pharmaceuticals: searching for activators of liponecrosis.

Arlia-Ciommo A, Svistkova V, Mohtashami S, Titorenko VI.

Oncotarget. 2016 Feb 2;7(5):5204-25. doi: 10.18632/oncotarget.6440. Review.

10.

Lymphatic Vessels, Inflammation, and Immunity in Skin Cancer.

Lund AW, Medler TR, Leachman SA, Coussens LM.

Cancer Discov. 2016 Jan;6(1):22-35. doi: 10.1158/2159-8290.CD-15-0023. Epub 2015 Nov 9. Review.

11.

Tumor-induced lymph node alterations detected by MRI lymphography using gadolinium nanoparticles.

Partridge SC, Kurland BF, Liu CL, Ho RJ, Ruddell A.

Sci Rep. 2015 Oct 26;5:15641. doi: 10.1038/srep15641.

12.

Pharmacological targeting of VEGFR signaling with axitinib inhibits Tsc2-null lesion growth in the mouse model of lymphangioleiomyomatosis.

Atochina-Vasserman EN, Abramova E, James ML, Rue R, Liu AY, Ersumo NT, Guo CJ, Gow AJ, Krymskaya VP.

Am J Physiol Lung Cell Mol Physiol. 2015 Dec 15;309(12):L1447-54. doi: 10.1152/ajplung.00262.2015. Epub 2015 Oct 2.

PMID:
26432869
13.

Network fingerprint: a knowledge-based characterization of biomedical networks.

Cui X, He H, He F, Wang S, Li F, Bo X.

Sci Rep. 2015 Aug 26;5:13286. doi: 10.1038/srep13286.

14.

A small molecular agent YL529 inhibits VEGF-D-induced lymphangiogenesis and metastasis in preclinical tumor models in addition to its known antitumor activities.

Xu Y, Lu W, Yang P, Peng W, Wang C, Li M, Li Y, Li G, Meng N, Lin H, Kan L, Wang S, Yang S, Yu L, Zhao Y.

BMC Cancer. 2015 Jul 18;15:525. doi: 10.1186/s12885-015-1451-2.

15.

Marketed nonsteroidal anti-inflammatory agents, antihypertensives, and human immunodeficiency virus protease inhibitors: as-yet-unused weapons of the oncologists' arsenal.

Papanagnou P, Baltopoulos P, Tsironi M.

Ther Clin Risk Manag. 2015 May 18;11:807-19. doi: 10.2147/TCRM.S82049. eCollection 2015. Review.

16.

IL-1β reduces tonic contraction of mesenteric lymphatic muscle cells, with the involvement of cycloxygenase-2 and prostaglandin E2.

Al-Kofahi M, Becker F, Gavins FN, Woolard MD, Tsunoda I, Wang Y, Ostanin D, Zawieja DC, Muthuchamy M, von der Weid PY, Alexander JS.

Br J Pharmacol. 2015 Aug;172(16):4038-51. doi: 10.1111/bph.13194. Epub 2015 Jul 6.

PMID:
25989136
17.

Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation.

Kesler CT, Pereira ER, Cui CH, Nelson GM, Masuck DJ, Baish JW, Padera TP.

FASEB J. 2015 Sep;29(9):3668-77. doi: 10.1096/fj.14-268920. Epub 2015 May 14.

PMID:
25977256
18.

Lymphangiogenesis in gastric cancer regulated through Akt/mTOR-VEGF-C/VEGF-D axis.

Chen H, Guan R, Lei Y, Chen J, Ge Q, Zhang X, Dou R, Chen H, Liu H, Qi X, Zhou X, Chen C.

BMC Cancer. 2015 Mar 7;15:103. doi: 10.1186/s12885-015-1109-0.

19.

The lymph node microenvironment and its role in the progression of metastatic cancer.

Pereira ER, Jones D, Jung K, Padera TP.

Semin Cell Dev Biol. 2015 Feb;38:98-105. doi: 10.1016/j.semcdb.2015.01.008. Epub 2015 Jan 22. Review.

20.

Fluid shear promotes chondrosarcoma cell invasion by activating matrix metalloproteinase 12 via IGF-2 and VEGF signaling pathways.

Wang P, Chen SH, Hung WC, Paul C, Zhu F, Guan PP, Huso DL, Kontrogianni-Konstantopoulos A, Konstantopoulos K.

Oncogene. 2015 Aug 27;34(35):4558-69. doi: 10.1038/onc.2014.397. Epub 2014 Dec 1.

Items per page

Supplemental Content

Write to the Help Desk