Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 89

Cited In for PubMed (Select 21976485)

1.

ΔF508 CFTR Surface Stability Is Regulated by DAB2 and CHIP-Mediated Ubiquitination in Post-Endocytic Compartments.

Fu L, Rab A, Tang LP, Bebok Z, Rowe SM, Bartoszewski R, Collawn JF.

PLoS One. 2015 Apr 16;10(4):e0123131. doi: 10.1371/journal.pone.0123131. eCollection 2015.

2.

Rescue of NBD2 Mutants N1303K and S1235R of CFTR by Small-Molecule Correctors and Transcomplementation.

Rapino D, Sabirzhanova I, Lopes-Pacheco M, Grover R, Guggino WB, Cebotaru L.

PLoS One. 2015 Mar 23;10(3):e0119796. doi: 10.1371/journal.pone.0119796. eCollection 2015.

3.

Protein traffic disorders: an effective high-throughput fluorescence microscopy pipeline for drug discovery.

Botelho HM, Uliyakina I, Awatade NT, Proença MC, Tischer C, Sirianant L, Kunzelmann K, Pepperkok R, Amaral MD.

Sci Rep. 2015 Mar 12;5:9038. doi: 10.1038/srep09038.

4.

PharmGKB summary: very important pharmacogene information for CFTR.

McDonagh EM, Clancy JP, Altman RB, Klein TE.

Pharmacogenet Genomics. 2015 Mar;25(3):149-56. doi: 10.1097/FPC.0000000000000112. No abstract available.

5.

Deciphering miRNA transcription factor feed-forward loops to identify drug repurposing candidates for cystic fibrosis.

Liu Z, Borlak J, Tong W.

Genome Med. 2014 Dec 2;6(12):94. doi: 10.1186/s13073-014-0094-2. eCollection 2014.

6.

The safety dance: biophysics of membrane protein folding and misfolding in a cellular context.

Schlebach JP, Sanders CR.

Q Rev Biophys. 2015 Feb;48(1):1-34. doi: 10.1017/S0033583514000110. Epub 2014 Nov 25.

PMID:
25420508
7.

Modulation of the maladaptive stress response to manage diseases of protein folding.

Roth DM, Hutt DM, Tong J, Bouchecareilh M, Wang N, Seeley T, Dekkers JF, Beekman JM, Garza D, Drew L, Masliah E, Morimoto RI, Balch WE.

PLoS Biol. 2014 Nov 18;12(11):e1001998. doi: 10.1371/journal.pbio.1001998. eCollection 2014 Nov.

8.

Cystic fibrosis genetics: from molecular understanding to clinical application.

Cutting GR.

Nat Rev Genet. 2015 Jan;16(1):45-56. doi: 10.1038/nrg3849. Epub 2014 Nov 18. Review.

9.

Activation of 3-phosphoinositide-dependent kinase 1 (PDK1) and serum- and glucocorticoid-induced protein kinase 1 (SGK1) by short-chain sphingolipid C4-ceramide rescues the trafficking defect of ΔF508-cystic fibrosis transmembrane conductance regulator (ΔF508-CFTR).

Caohuy H, Yang Q, Eudy Y, Ha TA, Xu AE, Glover M, Frizzell RA, Jozwik C, Pollard HB.

J Biol Chem. 2014 Dec 26;289(52):35953-68. doi: 10.1074/jbc.M114.598649. Epub 2014 Nov 10.

PMID:
25384981
10.

A physiologically-motivated compartment-based model of the effect of inhaled hypertonic saline on mucociliary clearance and liquid transport in cystic fibrosis.

Markovetz MR, Corcoran TE, Locke LW, Myerburg MM, Pilewski JM, Parker RS.

PLoS One. 2014 Nov 10;9(11):e111972. doi: 10.1371/journal.pone.0111972. eCollection 2014.

11.

Tgf-beta downregulation of distinct chloride channels in cystic fibrosis-affected epithelia.

Sun H, Harris WT, Kortyka S, Kotha K, Ostmann AJ, Rezayat A, Sridharan A, Sanders Y, Naren AP, Clancy JP.

PLoS One. 2014 Sep 30;9(9):e106842. doi: 10.1371/journal.pone.0106842. eCollection 2014.

12.

Structure-activity analysis of a CFTR channel potentiator: Distinct molecular parts underlie dual gating effects.

Csanády L, Töröcsik B.

J Gen Physiol. 2014 Oct;144(4):321-36. doi: 10.1085/jgp.201411246.

13.

Targeted proteomic quantitation of the absolute expression and turnover of cystic fibrosis transmembrane conductance regulator in the apical plasma membrane.

McShane AJ, Bajrami B, Ramos AA, Diego-Limpin PA, Farrokhi V, Coutermarsh BA, Stanton BA, Jensen T, Riordan JR, Wetmore D, Joseloff E, Yao X.

J Proteome Res. 2014 Nov 7;13(11):4676-85. doi: 10.1021/pr5006795. Epub 2014 Oct 3.

PMID:
25227318
14.

Towards personalized agriculture: what chemical genomics can bring to plant biotechnology.

Stokes ME, McCourt P.

Front Plant Sci. 2014 Jul 11;5:344. doi: 10.3389/fpls.2014.00344. eCollection 2014.

15.

Gaining the Upper Hand on Pulmonary Drug Delivery.

Tyrrell J, Tarran R.

J Pharmacovigil. 2014 Mar 1;2(1):118.

16.

Potentiator ivacaftor abrogates pharmacological correction of ΔF508 CFTR in cystic fibrosis.

Cholon DM, Quinney NL, Fulcher ML, Esther CR Jr, Das J, Dokholyan NV, Randell SH, Boucher RC, Gentzsch M.

Sci Transl Med. 2014 Jul 23;6(246):246ra96. doi: 10.1126/scitranslmed.3008680.

17.

Cystic fibrosis related liver disease--another black box in hepatology.

Staufer K, Halilbasic E, Trauner M, Kazemi-Shirazi L.

Int J Mol Sci. 2014 Aug 4;15(8):13529-49. doi: 10.3390/ijms150813529. Review.

18.

CFTR Modulators for the Treatment of Cystic Fibrosis.

Pettit RS, Fellner C.

P T. 2014 Jul;39(7):500-11.

19.

Roscovitine is a proteostasis regulator that corrects the trafficking defect of F508del-CFTR by a CDK-independent mechanism.

Norez C, Vandebrouck C, Bertrand J, Noel S, Durieu E, Oumata N, Galons H, Antigny F, Chatelier A, Bois P, Meijer L, Becq F.

Br J Pharmacol. 2014 Nov;171(21):4831-49. doi: 10.1111/bph.12859.

PMID:
25065395
20.

Rescuing ΔF508 CFTR with trimethylangelicin, a dual-acting corrector and potentiator.

Collawn JF, Fu L, Bartoszewski R, Matalon S.

Am J Physiol Lung Cell Mol Physiol. 2014 Sep 15;307(6):L431-4. doi: 10.1152/ajplung.00177.2014. Epub 2014 Jul 25. Review.

PMID:
25063802
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk