Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 83

Cited In for PubMed (Select 21892191)

1.

Pharmacological repression of PPARγ promotes osteogenesis.

Marciano DP, Kuruvilla DS, Boregowda SV, Asteian A, Hughes TS, Garcia-Ordonez R, Corzo CA, Khan TM, Novick SJ, Park H, Kojetin DJ, Phinney DG, Bruning JB, Kamenecka TM, Griffin PR.

Nat Commun. 2015 Jun 12;6:7443. doi: 10.1038/ncomms8443.

PMID:
26068133
2.

Phosphorylation of PPARγ Affects the Collective Motions of the PPARγ-RXRα-DNA Complex.

Lemkul JA, Lewis SN, Bassaganya-Riera J, Bevan DR.

PLoS One. 2015 May 8;10(5):e0123984. doi: 10.1371/journal.pone.0123984. eCollection 2015.

3.

Identification of a novel selective agonist of PPARγ with no promotion of adipogenesis and less inhibition of osteoblastogenesis.

Liu C, Feng T, Zhu N, Liu P, Han X, Chen M, Wang X, Li N, Li Y, Xu Y, Si S.

Sci Rep. 2015 Apr 1;5:9530. doi: 10.1038/srep09530.

4.

Modulation of Macrophage Gene Expression via Liver X Receptor α Serine 198 Phosphorylation.

Wu C, Hussein MA, Shrestha E, Leone S, Aiyegbo MS, Lambert WM, Pourcet B, Cardozo T, Gustafson JA, Fisher EA, Pineda-Torra I, Garabedian MJ.

Mol Cell Biol. 2015 Jun 1;35(11):2024-34. doi: 10.1128/MCB.00985-14. Epub 2015 Mar 30.

PMID:
25825525
5.

Appearance and disappearance of the mRNA signature characteristic of Treg cells in visceral adipose tissue: age, diet, and PPARγ effects.

Cipolletta D, Cohen P, Spiegelman BM, Benoist C, Mathis D.

Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):482-7. doi: 10.1073/pnas.1423486112. Epub 2014 Dec 30.

PMID:
25550516
6.

Minireview: nuclear receptor regulation of osteoclast and bone remodeling.

Jin Z, Li X, Wan Y.

Mol Endocrinol. 2015 Feb;29(2):172-86. doi: 10.1210/me.2014-1316. Epub 2014 Dec 30.

PMID:
25549044
7.

An ERK/Cdk5 axis controls the diabetogenic actions of PPARγ.

Banks AS, McAllister FE, Camporez JP, Zushin PJ, Jurczak MJ, Laznik-Bogoslavski D, Shulman GI, Gygi SP, Spiegelman BM.

Nature. 2015 Jan 15;517(7534):391-5. doi: 10.1038/nature13887. Epub 2014 Nov 17.

PMID:
25409143
8.

Thrap3 docks on phosphoserine 273 of PPARγ and controls diabetic gene programming.

Choi JH, Choi SS, Kim ES, Jedrychowski MP, Yang YR, Jang HJ, Suh PG, Banks AS, Gygi SP, Spiegelman BM.

Genes Dev. 2014 Nov 1;28(21):2361-9. doi: 10.1101/gad.249367.114. Epub 2014 Oct 14.

9.

An insulin-sensitizing thiazolidinedione, which minimally activates PPARγ, does not cause bone loss.

Fukunaga T, Zou W, Rohatgi N, Colca JR, Teitelbaum SL.

J Bone Miner Res. 2015 Mar;30(3):481-8. doi: 10.1002/jbmr.2364.

PMID:
25257948
10.

Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes.

Soccio RE, Chen ER, Lazar MA.

Cell Metab. 2014 Oct 7;20(4):573-91. doi: 10.1016/j.cmet.2014.08.005. Epub 2014 Sep 18.

PMID:
25242225
11.

HDX-MS guided drug discovery: small molecules and biopharmaceuticals.

Marciano DP, Dharmarajan V, Griffin PR.

Curr Opin Struct Biol. 2014 Oct;28:105-11. doi: 10.1016/j.sbi.2014.08.007. Epub 2014 Aug 30.

PMID:
25179005
12.

Revisiting PPARγ as a target for the treatment of metabolic disorders.

Choi SS, Park J, Choi JH.

BMB Rep. 2014 Nov;47(11):599-608.

13.

CNX-013-B2, a unique pan tissue acting rexinoid, modulates several nuclear receptors and controls multiple risk factors of the metabolic syndrome without risk of hypertriglyceridemia, hepatomegaly and body weight gain in animal models.

Sadasivuni MK, Reddy BM, Singh J, Anup MO, Sunil V, Lakshmi MN, Yogeshwari S, Chacko SK, Pooja TL, Dandu A, Harish C, Gopala AS, Pratibha S, Naveenkumar BS, Pallavi PM, Verma MK, Moolemath Y, Somesh BP, Venkataranganna MV, Jagannath MR.

Diabetol Metab Syndr. 2014 Aug 12;6(1):83. doi: 10.1186/1758-5996-6-83. eCollection 2014.

14.

A novel non-agonist peroxisome proliferator-activated receptor γ (PPARγ) ligand UHC1 blocks PPARγ phosphorylation by cyclin-dependent kinase 5 (CDK5) and improves insulin sensitivity.

Choi SS, Kim ES, Koh M, Lee SJ, Lim D, Yang YR, Jang HJ, Seo KA, Min SH, Lee IH, Park SB, Suh PG, Choi JH.

J Biol Chem. 2014 Sep 19;289(38):26618-29. doi: 10.1074/jbc.M114.566794. Epub 2014 Aug 6.

PMID:
25100724
15.

Retinaldehyde dehydrogenase 1 deficiency inhibits PPARγ-mediated bone loss and marrow adiposity.

Nallamshetty S, Le PT, Wang H, Issacsohn MJ, Reeder DJ, Rhee EJ, Kiefer FW, Brown JD, Rosen CJ, Plutzky J.

Bone. 2014 Oct;67:281-91. doi: 10.1016/j.bone.2014.07.005. Epub 2014 Jul 24.

PMID:
25064526
16.

Identification of Posttranslational Modifications in Peroxisome Proliferator-Activated Receptor γ Using Mass Spectrometry.

Katsura S, Okumura T, Ito R, Sugawara A, Yokoyama A.

PPAR Res. 2014;2014:468925. doi: 10.1155/2014/468925. Epub 2014 Jun 25.

17.
18.

Artemisia scoparia enhances adipocyte development and endocrine function in vitro and enhances insulin action in vivo.

Richard AJ, Fuller S, Fedorcenco V, Beyl R, Burris TP, Mynatt R, Ribnicky DM, Stephens JM.

PLoS One. 2014 Jun 10;9(6):e98897. doi: 10.1371/journal.pone.0098897. eCollection 2014.

19.

High-fat and obesogenic diets: current and future strategies to fight obesity and diabetes.

Teodoro JS, Varela AT, Rolo AP, Palmeira CM.

Genes Nutr. 2014 Jul;9(4):406. doi: 10.1007/s12263-014-0406-6. Epub 2014 May 20.

20.

Partial agonist, telmisartan, maintains PPARγ serine 112 phosphorylation, and does not affect osteoblast differentiation and bone mass.

Kolli V, Stechschulte LA, Dowling AR, Rahman S, Czernik PJ, Lecka-Czernik B.

PLoS One. 2014 May 8;9(5):e96323. doi: 10.1371/journal.pone.0096323. eCollection 2014.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk