Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 36

1.

Genetic enhancement of limb defects in a mouse model of Cornelia de Lange syndrome.

Lopez-Burks ME, Santos R, Kawauchi S, Calof AL, Lander AD.

Am J Med Genet C Semin Med Genet. 2016 Jun;172(2):146-54. doi: 10.1002/ajmg.c.31491. Epub 2016 Apr 27.

2.

Drosophila Nipped-B Mutants Model Cornelia de Lange Syndrome in Growth and Behavior.

Wu Y, Gause M, Xu D, Misulovin Z, Schaaf CA, Mosarla RC, Mannino E, Shannon M, Jones E, Shi M, Chen WF, Katz OL, Sehgal A, Jongens TA, Krantz ID, Dorsett D.

PLoS Genet. 2015 Nov 6;11(11):e1005655. doi: 10.1371/journal.pgen.1005655. eCollection 2015 Nov.

3.

Inter-chromosomal contact networks provide insights into Mammalian chromatin organization.

Kaufmann S, Fuchs C, Gonik M, Khrameeva EE, Mironov AA, Frishman D.

PLoS One. 2015 May 11;10(5):e0126125. doi: 10.1371/journal.pone.0126125. eCollection 2015.

4.

L-leucine partially rescues translational and developmental defects associated with zebrafish models of Cornelia de Lange syndrome.

Xu B, Sowa N, Cardenas ME, Gerton JL.

Hum Mol Genet. 2015 Mar 15;24(6):1540-55. doi: 10.1093/hmg/ddu565. Epub 2014 Nov 6.

5.

A novel virus-inducible enhancer of the interferon-β gene with tightly linked promoter and enhancer activities.

Banerjee AR, Kim YJ, Kim TH.

Nucleic Acids Res. 2014 Nov 10;42(20):12537-54. doi: 10.1093/nar/gku1018. Epub 2014 Oct 27.

6.

Nipbl and mediator cooperatively regulate gene expression to control limb development.

Muto A, Ikeda S, Lopez-Burks ME, Kikuchi Y, Calof AL, Lander AD, Schilling TF.

PLoS Genet. 2014 Sep 25;10(9):e1004671. doi: 10.1371/journal.pgen.1004671. eCollection 2014 Sep.

7.

Architectural proteins CTCF and cohesin have distinct roles in modulating the higher order structure and expression of the CFTR locus.

Gosalia N, Neems D, Kerschner JL, Kosak ST, Harris A.

Nucleic Acids Res. 2014 Sep;42(15):9612-22. doi: 10.1093/nar/gku648. Epub 2014 Jul 31.

8.

The 3D genome in transcriptional regulation and pluripotency.

Gorkin DU, Leung D, Ren B.

Cell Stem Cell. 2014 Jun 5;14(6):762-75. doi: 10.1016/j.stem.2014.05.017. Review.

9.

Checks and balances between cohesin and polycomb in gene silencing and transcription.

Dorsett D, Kassis JA.

Curr Biol. 2014 Jun 2;24(11):R535-9. doi: 10.1016/j.cub.2014.04.037.

10.

Nucleosome eviction and multiple co-factor binding predict estrogen-receptor-alpha-associated long-range interactions.

He C, Wang X, Zhang MQ.

Nucleic Acids Res. 2014 Jun;42(11):6935-44. doi: 10.1093/nar/gku327. Epub 2014 Apr 29.

11.

Making connections: insulators organize eukaryotic chromosomes into independent cis-regulatory networks.

Chetverina D, Aoki T, Erokhin M, Georgiev P, Schedl P.

Bioessays. 2014 Feb;36(2):163-72. doi: 10.1002/bies.201300125. Epub 2013 Nov 26. Review.

12.

Mechanisms of cohesin-mediated gene regulation and lessons learned from cohesinopathies.

Ball AR Jr, Chen YY, Yokomori K.

Biochim Biophys Acta. 2014 Mar;1839(3):191-202. doi: 10.1016/j.bbagrm.2013.11.002. Epub 2013 Nov 22. Review.

13.

Mutation spectrum and genotype-phenotype correlation in Cornelia de Lange syndrome.

Mannini L, Cucco F, Quarantotti V, Krantz ID, Musio A.

Hum Mutat. 2013 Dec;34(12):1589-96. doi: 10.1002/humu.22430. Epub 2013 Sep 16. Review.

14.

The Drosophila enhancer of split gene complex: architecture and coordinate regulation by notch, cohesin, and polycomb group proteins.

Schaaf CA, Misulovin Z, Gause M, Koenig A, Dorsett D.

G3 (Bethesda). 2013 Oct 3;3(10):1785-94. doi: 10.1534/g3.113.007534.

15.

Reduction of Nipbl impairs cohesin loading locally and affects transcription but not cohesion-dependent functions in a mouse model of Cornelia de Lange Syndrome.

Remeseiro S, Cuadrado A, Kawauchi S, Calof AL, Lander AD, Losada A.

Biochim Biophys Acta. 2013 Dec;1832(12):2097-102. doi: 10.1016/j.bbadis.2013.07.020. Epub 2013 Aug 3.

16.

Regional chromatin decompaction in Cornelia de Lange syndrome associated with NIPBL disruption can be uncoupled from cohesin and CTCF.

Nolen LD, Boyle S, Ansari M, Pritchard E, Bickmore WA.

Hum Mol Genet. 2013 Oct 15;22(20):4180-93. doi: 10.1093/hmg/ddt265. Epub 2013 Jun 10.

17.

CTCF: the protein, the binding partners, the binding sites and their chromatin loops.

Holwerda SJ, de Laat W.

Philos Trans R Soc Lond B Biol Sci. 2013 May 6;368(1620):20120369. doi: 10.1098/rstb.2012.0369. Print 2013. Review.

18.

High-resolution analysis of cis-acting regulatory networks at the α-globin locus.

Hughes JR, Lower KM, Dunham I, Taylor S, De Gobbi M, Sloane-Stanley JA, McGowan S, Ragoussis J, Vernimmen D, Gibbons RJ, Higgs DR.

Philos Trans R Soc Lond B Biol Sci. 2013 May 6;368(1620):20120361. doi: 10.1098/rstb.2012.0361. Print 2013.

19.

Chromatin architecture, CCCTC-binding factor, and V(D)J recombination: managing long-distance relationships at antigen receptor loci.

Shih HY, Krangel MS.

J Immunol. 2013 May 15;190(10):4915-21. doi: 10.4049/jimmunol.1300218. Review.

20.

Genome-wide control of RNA polymerase II activity by cohesin.

Schaaf CA, Kwak H, Koenig A, Misulovin Z, Gohara DW, Watson A, Zhou Y, Lis JT, Dorsett D.

PLoS Genet. 2013 Mar;9(3):e1003382. doi: 10.1371/journal.pgen.1003382. Epub 2013 Mar 21.

Items per page

Supplemental Content

Write to the Help Desk