Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 23

Cited In for PubMed (Select 21401735)

1.

Qualitative and quantitative proteomic analysis of Vitamin C induced changes in Mycobacterium smegmatis.

Mishra A, Sarkar D.

Front Microbiol. 2015 May 18;6:451. doi: 10.3389/fmicb.2015.00451. eCollection 2015.

2.

Structural and functional studies of phosphoenolpyruvate carboxykinase from Mycobacterium tuberculosis.

Machová I, Snášel J, Dostál J, Brynda J, Fanfrlík J, Singh M, Tarábek J, Vaněk O, Bednárová L, Pichová I.

PLoS One. 2015 Mar 23;10(3):e0120682. doi: 10.1371/journal.pone.0120682. eCollection 2015.

3.

Trans-species communication in the Mycobacterium tuberculosis-infected macrophage.

Tan S, Russell DG.

Immunol Rev. 2015 Mar;264(1):233-48. doi: 10.1111/imr.12254.

PMID:
25703563
4.

The Sculpting of the Mycobacterium tuberculosis Genome by Host Cell-Derived Pressures.

Russell DG, Lee W, Tan S, Sukumar N, Podinovskaia M, Fahey RJ, VanderVen BC.

Microbiol Spectr. 2014;2(2). doi: 10.1128/microbiolspec.MGM2-0016-2013.

5.

Slow growth of Mycobacterium tuberculosis at acidic pH is regulated by phoPR and host-associated carbon sources.

Baker JJ, Johnson BK, Abramovitch RB.

Mol Microbiol. 2014 Oct;94(1):56-69. doi: 10.1111/mmi.12688. Epub 2014 Jul 13.

PMID:
24975990
6.

A specific polymorphism in Mycobacterium tuberculosis H37Rv causes differential ESAT-6 expression and identifies WhiB6 as a novel ESX-1 component.

Solans L, Aguiló N, Samper S, Pawlik A, Frigui W, Martín C, Brosch R, Gonzalo-Asensio J.

Infect Immun. 2014 Aug;82(8):3446-56. doi: 10.1128/IAI.01824-14. Epub 2014 Jun 2.

7.

The PhoP-dependent ncRNA Mcr7 modulates the TAT secretion system in Mycobacterium tuberculosis.

Solans L, Gonzalo-Asensio J, Sala C, Benjak A, Uplekar S, Rougemont J, Guilhot C, Malaga W, Martín C, Cole ST.

PLoS Pathog. 2014 May 29;10(5):e1004183. doi: 10.1371/journal.ppat.1004183. eCollection 2014 May.

8.

Mycobacterium tuberculosis phosphoenolpyruvate carboxykinase is regulated by redox mechanisms and interaction with thioredoxin.

Machová I, Snašel J, Zimmermann M, Laubitz D, Plocinski P, Oehlmann W, Singh M, Dostál J, Sauer U, Pichová I.

J Biol Chem. 2014 May 9;289(19):13066-78. doi: 10.1074/jbc.M113.536748. Epub 2014 Mar 21.

9.

cor, a novel carbon monoxide resistance gene, is essential for Mycobacterium tuberculosis pathogenesis.

Zacharia VM, Manzanillo PS, Nair VR, Marciano DK, Kinch LN, Grishin NV, Cox JS, Shiloh MU.

MBio. 2013 Nov 19;4(6):e00721-13. doi: 10.1128/mBio.00721-13.

10.

Modeling Mycobacterium tuberculosis early granuloma formation in experimental human lung tissue.

Parasa VR, Rahman MJ, Ngyuen Hoang AT, Svensson M, Brighenti S, Lerm M.

Dis Model Mech. 2014 Feb;7(2):281-8. doi: 10.1242/dmm.013854. Epub 2013 Nov 7.

11.

The Mycobacterium tuberculosis regulatory network and hypoxia.

Galagan JE, Minch K, Peterson M, Lyubetskaya A, Azizi E, Sweet L, Gomes A, Rustad T, Dolganov G, Glotova I, Abeel T, Mahwinney C, Kennedy AD, Allard R, Brabant W, Krueger A, Jaini S, Honda B, Yu WH, Hickey MJ, Zucker J, Garay C, Weiner B, Sisk P, Stolte C, Winkler JK, Van de Peer Y, Iazzetti P, Camacho D, Dreyfuss J, Liu Y, Dorhoi A, Mollenkopf HJ, Drogaris P, Lamontagne J, Zhou Y, Piquenot J, Park ST, Raman S, Kaufmann SH, Mohney RP, Chelsky D, Moody DB, Sherman DR, Schoolnik GK.

Nature. 2013 Jul 11;499(7457):178-83. doi: 10.1038/nature12337. Epub 2013 Jul 3.

12.

Mycobacterium tuberculosis responds to chloride and pH as synergistic cues to the immune status of its host cell.

Tan S, Sukumar N, Abramovitch RB, Parish T, Russell DG.

PLoS Pathog. 2013;9(4):e1003282. doi: 10.1371/journal.ppat.1003282. Epub 2013 Apr 4.

13.

Substrate specificity of MarP, a periplasmic protease required for resistance to acid and oxidative stress in Mycobacterium tuberculosis.

Small JL, O'Donoghue AJ, Boritsch EC, Tsodikov OV, Knudsen GM, Vandal O, Craik CS, Ehrt S.

J Biol Chem. 2013 May 3;288(18):12489-99. doi: 10.1074/jbc.M113.456541. Epub 2013 Mar 15.

14.

Database resources for the tuberculosis community.

Lew JM, Mao C, Shukla M, Warren A, Will R, Kuznetsov D, Xenarios I, Robertson BD, Gordon SV, Schnappinger D, Cole ST, Sobral B.

Tuberculosis (Edinb). 2013 Jan;93(1):12-7. doi: 10.1016/j.tube.2012.11.003. Epub 2013 Jan 17. Review.

15.

Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress.

Lee W, VanderVen BC, Fahey RJ, Russell DG.

J Biol Chem. 2013 Mar 8;288(10):6788-800. doi: 10.1074/jbc.M112.445056. Epub 2013 Jan 10.

16.

The evolutionary pressures that have molded Mycobacterium tuberculosis into an infectious adjuvant.

Russell DG.

Curr Opin Microbiol. 2013 Feb;16(1):78-84. doi: 10.1016/j.mib.2012.11.007. Epub 2013 Jan 3. Review.

17.

MprAB regulates the espA operon in Mycobacterium tuberculosis and modulates ESX-1 function and host cytokine response.

Pang X, Samten B, Cao G, Wang X, Tvinnereim AR, Chen XL, Howard ST.

J Bacteriol. 2013 Jan;195(1):66-75. doi: 10.1128/JB.01067-12. Epub 2012 Oct 26.

18.

Virulence factors of the Mycobacterium tuberculosis complex.

Forrellad MA, Klepp LI, Gioffré A, Sabio y García J, Morbidoni HR, de la Paz Santangelo M, Cataldi AA, Bigi F.

Virulence. 2013 Jan 1;4(1):3-66. doi: 10.4161/viru.22329. Epub 2012 Oct 17. Review.

19.

The role of the mycobacterial DNA-binding protein 1 (MDP1) from Mycobacterium bovis BCG in host cell interaction.

Kunisch R, Kamal E, Lewin A.

BMC Microbiol. 2012 Aug 3;12:165. doi: 10.1186/1471-2180-12-165.

20.

Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection.

Rohde KH, Veiga DF, Caldwell S, Balázsi G, Russell DG.

PLoS Pathog. 2012;8(6):e1002769. doi: 10.1371/journal.ppat.1002769. Epub 2012 Jun 21.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk