Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 42

Cited In for PubMed (Select 21063074)

1.

CD47 Promotes Protective Innate and Adaptive Immunity in a Mouse Model of Disseminated Candidiasis.

Navarathna DH, Stein EV, Lessey-Morillon EC, Nayak D, Martin-Manso G, Roberts DD.

PLoS One. 2015 May 26;10(5):e0128220. doi: 10.1371/journal.pone.0128220. eCollection 2015.

2.

Experimental autoimmune encephalomyelitis development is aggravated by Candida albicans infection.

Fraga-Silva TF, Mimura LA, Marchetti CM, Chiuso-Minicucci F, França TG, Zorzella-Pezavento SF, Venturini J, Arruda MS, Sartori A.

J Immunol Res. 2015;2015:635052. doi: 10.1155/2015/635052. Epub 2015 Apr 19.

3.

Pathogenic fungi regulate immunity by inducing neutrophilic myeloid-derived suppressor cells.

Rieber N, Singh A, Öz H, Carevic M, Bouzani M, Amich J, Ost M, Ye Z, Ballbach M, Schäfer I, Mezger M, Klimosch SN, Weber AN, Handgretinger R, Krappmann S, Liese J, Engeholm M, Schüle R, Salih HR, Marodi L, Speckmann C, Grimbacher B, Ruland J, Brown GD, Beilhack A, Loeffler J, Hartl D.

Cell Host Microbe. 2015 Apr 8;17(4):507-14. doi: 10.1016/j.chom.2015.02.007. Epub 2015 Mar 12.

4.

Mononuclear phagocyte-mediated antifungal immunity: the role of chemotactic receptors and ligands.

Swamydas M, Break TJ, Lionakis MS.

Cell Mol Life Sci. 2015 Jun;72(11):2157-75. doi: 10.1007/s00018-015-1858-6. Epub 2015 Feb 26.

PMID:
25715741
5.

Protection from systemic Candida albicans infection by inactivation of the Sts phosphatases.

Naseem S, Frank D, Konopka JB, Carpino N.

Infect Immun. 2015 Feb;83(2):637-45. doi: 10.1128/IAI.02789-14. Epub 2014 Nov 24.

PMID:
25422266
6.

Novel insights into host-fungal pathogen interactions derived from live-cell imaging.

Bain J, Gow NA, Erwig LP.

Semin Immunopathol. 2015 Mar;37(2):131-9. doi: 10.1007/s00281-014-0463-3. Epub 2014 Nov 15.

7.

Cutting edge: Failure of antigen-specific CD4+ T cell recruitment to the kidney during systemic candidiasis.

Drummond RA, Wallace C, Reid DM, Way SS, Kaplan DH, Brown GD.

J Immunol. 2014 Dec 1;193(11):5381-5. doi: 10.4049/jimmunol.1401675. Epub 2014 Oct 24.

8.

Syk signaling in dendritic cells orchestrates innate resistance to systemic fungal infection.

Whitney PG, Bär E, Osorio F, Rogers NC, Schraml BU, Deddouche S, LeibundGut-Landmann S, Reis e Sousa C.

PLoS Pathog. 2014 Jul 17;10(7):e1004276. doi: 10.1371/journal.ppat.1004276. eCollection 2014 Jul.

9.

Catching fire: Candida albicans, macrophages, and pyroptosis.

Krysan DJ, Sutterwala FS, Wellington M.

PLoS Pathog. 2014 Jun 26;10(6):e1004139. doi: 10.1371/journal.ppat.1004139. eCollection 2014 Jun. No abstract available.

10.

Overview of vertebrate animal models of fungal infection.

Hohl TM.

J Immunol Methods. 2014 Aug;410:100-12. doi: 10.1016/j.jim.2014.03.022. Epub 2014 Apr 4. Review.

PMID:
24709390
11.

Animal models for candidiasis.

Conti HR, Huppler AR, Whibley N, Gaffen SL.

Curr Protoc Immunol. 2014 Apr 2;105:19.6.1-19.6.17. doi: 10.1002/0471142735.im1906s105.

12.

Assessing the advantage of morphological changes in Candida albicans: a game theoretical study.

Tyc KM, Kühn C, Wilson D, Klipp E.

Front Microbiol. 2014 Feb 6;5:41. doi: 10.3389/fmicb.2014.00041. eCollection 2014.

13.

In vitro and in vivo activity of a novel antifungal small molecule against Candida infections.

Wong SS, Kao RY, Yuen KY, Wang Y, Yang D, Samaranayake LP, Seneviratne CJ.

PLoS One. 2014 Jan 22;9(1):e85836. doi: 10.1371/journal.pone.0085836. eCollection 2014.

14.

Candida albicans triggers NLRP3-mediated pyroptosis in macrophages.

Wellington M, Koselny K, Sutterwala FS, Krysan DJ.

Eukaryot Cell. 2014 Feb;13(2):329-40. doi: 10.1128/EC.00336-13. Epub 2013 Dec 27.

15.

Role of Dectin-2 for host defense against systemic infection with Candida glabrata.

Ifrim DC, Bain JM, Reid DM, Oosting M, Verschueren I, Gow NA, van Krieken JH, Brown GD, Kullberg BJ, Joosten LA, van der Meer JW, Koentgen F, Erwig LP, Quintin J, Netea MG.

Infect Immun. 2014 Mar;82(3):1064-73. doi: 10.1128/IAI.01189-13. Epub 2013 Dec 16.

16.

The MARVEL domain protein Nce102 regulates actin organization and invasive growth of Candida albicans.

Douglas LM, Wang HX, Konopka JB.

MBio. 2013 Nov 26;4(6):e00723-13. doi: 10.1128/mBio.00723-13.

17.

CX3CR1-dependent renal macrophage survival promotes Candida control and host survival.

Lionakis MS, Swamydas M, Fischer BG, Plantinga TS, Johnson MD, Jaeger M, Green NM, Masedunskas A, Weigert R, Mikelis C, Wan W, Lee CC, Lim JK, Rivollier A, Yang JC, Laird GM, Wheeler RT, Alexander BD, Perfect JR, Gao JL, Kullberg BJ, Netea MG, Murphy PM.

J Clin Invest. 2013 Dec;123(12):5035-51. doi: 10.1172/JCI71307. Epub 2013 Nov 1.

18.

NADPH oxidase-driven phagocyte recruitment controls Candida albicans filamentous growth and prevents mortality.

Brothers KM, Gratacap RL, Barker SE, Newman ZR, Norum A, Wheeler RT.

PLoS Pathog. 2013;9(10):e1003634. doi: 10.1371/journal.ppat.1003634. Epub 2013 Oct 3.

19.

Profiling of Candida albicans gene expression during intra-abdominal candidiasis identifies biologic processes involved in pathogenesis.

Cheng S, Clancy CJ, Xu W, Schneider F, Hao B, Mitchell AP, Nguyen MH.

J Infect Dis. 2013 Nov 1;208(9):1529-37. doi: 10.1093/infdis/jit335. Epub 2013 Sep 4.

20.

Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis.

Ngo LY, Kasahara S, Kumasaka DK, Knoblaugh SE, Jhingran A, Hohl TM.

J Infect Dis. 2014 Jan 1;209(1):109-19. doi: 10.1093/infdis/jit413. Epub 2013 Aug 6.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk