Format
Items per page
Sort by

Send to:

Choose Destination

Results: 12

Cited In for PubMed (Select 20826375)

1.

Development of phenotypic and transcriptional biomarkers to evaluate relative activity of potentially estrogenic chemicals in ovariectomized mice.

Hewitt SC, Winuthayanon W, Pockette B, Kerns RT, Foley JF, Flagler N, Ney E, Suksamrarn A, Piyachaturawat P, Bushel PR, Korach KS.

Environ Health Perspect. 2015 Apr;123(4):344-52. doi: 10.1289/ehp.1307935. Epub 2015 Jan 9.

2.

Uterine epithelial cell estrogen receptor alpha-dependent and -independent genomic profiles that underlie estrogen responses in mice.

Winuthayanon W, Hewitt SC, Korach KS.

Biol Reprod. 2014 Nov;91(5):110. doi: 10.1095/biolreprod.114.120170. Epub 2014 Sep 10.

PMID:
25210133
3.

Estrogen response element-independent signaling partially restores post-ovariectomy body weight gain but is not sufficient for 17β-estradiol's control of energy homeostasis.

Mamounis KJ, Yang JA, Yasrebi A, Roepke TA.

Steroids. 2014 Mar;81:88-98. doi: 10.1016/j.steroids.2013.10.018. Epub 2013 Nov 16.

4.

A single gestational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin disrupts the adult uterine response to estradiol in mice.

Burns KA, Zorrilla LM, Hamilton KJ, Reed CE, Birnbaum LS, Korach KS.

Toxicol Sci. 2013 Dec;136(2):514-26. doi: 10.1093/toxsci/kft208. Epub 2013 Sep 19.

5.

The natural estrogenic compound diarylheptanoid (D3): in vitro mechanisms of action and in vivo uterine responses via estrogen receptor α.

Winuthayanon W, Piyachaturawat P, Suksamrarn A, Burns KA, Arao Y, Hewitt SC, Pedersen LC, Korach KS.

Environ Health Perspect. 2013 Apr;121(4):433-9. doi: 10.1289/ehp.1206122. Epub 2013 Jan 18.

6.

Endocrine-Disrupting Chemicals (EDCs): In Vitro Mechanism of Estrogenic Activation and Differential Effects on ER Target Genes.

Li Y, Luh CJ, Burns KA, Arao Y, Jiang Z, Teng CT, Tice RR, Korach KS.

Environ Health Perspect. 2013 Apr;121(4):459-66. doi: 10.1289/ehp.1205951. Epub 2013 Feb 5.

7.

Genetic control of estrogen-regulated transcriptional and cellular responses in mouse uterus.

Wall EH, Hewitt SC, Liu L, del Rio R, Case LK, Lin CY, Korach KS, Teuscher C.

FASEB J. 2013 May;27(5):1874-86. doi: 10.1096/fj.12-213462. Epub 2013 Jan 31.

8.

Consortium-based science: the NIEHS's multipronged, collaborative approach to assessing the health effects of bisphenol A.

Birnbaum LS, Bucher JR, Collman GW, Zeldin DC, Johnson AF, Schug TT, Heindel JJ.

Environ Health Perspect. 2012 Dec;120(12):1640-4. doi: 10.1289/ehp.1205330. Epub 2012 Sep 25.

9.

Endocrine disrupting chemicals promote the growth of ovarian cancer cells via the ER-CXCL12-CXCR4 signaling axis.

Hall JM, Korach KS.

Mol Carcinog. 2013 Sep;52(9):715-25. doi: 10.1002/mc.21913. Epub 2012 Apr 30.

10.

Differential estrogenic actions of endocrine-disrupting chemicals bisphenol A, bisphenol AF, and zearalenone through estrogen receptor α and β in vitro.

Li Y, Burns KA, Arao Y, Luh CJ, Korach KS.

Environ Health Perspect. 2012 Jul;120(7):1029-35. doi: 10.1289/ehp.1104689. Epub 2012 Apr 11. Erratum in: Environ Health Perspect. 2012 Dec;120(12):A455.

11.

Preimplantation exposure to bisphenol A (BPA) affects embryo transport, preimplantation embryo development, and uterine receptivity in mice.

Xiao S, Diao H, Smith MA, Song X, Ye X.

Reprod Toxicol. 2011 Dec;32(4):434-41. doi: 10.1016/j.reprotox.2011.08.010. Epub 2011 Sep 3.

12.

Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action.

Shanle EK, Xu W.

Chem Res Toxicol. 2011 Jan 14;24(1):6-19. doi: 10.1021/tx100231n. Epub 2010 Nov 5. Review.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk