Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 65

1.

Functions of miRNAs during Mammalian Heart Development.

Yan S, Jiao K.

Int J Mol Sci. 2016 May 21;17(5). pii: E789. doi: 10.3390/ijms17050789. Review.

2.

'Adipaging': ageing and obesity share biological hallmarks related to a dysfunctional adipose tissue.

Pérez LM, Pareja-Galeano H, Sanchis-Gomar F, Emanuele E, Lucia A, Gálvez BG.

J Physiol. 2016 Jun 15;594(12):3187-207. doi: 10.1113/JP271691. Epub 2016 May 10.

PMID:
26926488
3.

Wnt/β-catenin signaling enables developmental transitions during valvulogenesis.

Bosada FM, Devasthali V, Jones KA, Stankunas K.

Development. 2016 Mar 15;143(6):1041-54. doi: 10.1242/dev.130575. Epub 2016 Feb 18.

PMID:
26893350
4.

Altered Hemodynamics in the Embryonic Heart Affects Outflow Valve Development.

Menon V, Eberth JF, Goodwin RL, Potts JD.

J Cardiovasc Dev Dis. 2015;2(2):108-124. Epub 2015 May 15.

5.

Age-Dependent Changes in Geometry, Tissue Composition and Mechanical Properties of Fetal to Adult Cryopreserved Human Heart Valves.

van Geemen D, Soares AL, Oomen PJ, Driessen-Mol A, Janssen-van den Broek MW, van den Bogaerdt AJ, Bogers AJ, Goumans MJ, Baaijens FP, Bouten CV.

PLoS One. 2016 Feb 11;11(2):e0149020. doi: 10.1371/journal.pone.0149020. eCollection 2016.

6.

Rac1 Signaling Is Required for Anterior Second Heart Field Cellular Organization and Cardiac Outflow Tract Development.

Leung C, Liu Y, Lu X, Kim M, Drysdale TA, Feng Q.

J Am Heart Assoc. 2015 Dec 31;5(1). pii: e002508. doi: 10.1161/JAHA.115.002508.

7.

Transcriptional control of cardiac fibroblast plasticity.

Lighthouse JK, Small EM.

J Mol Cell Cardiol. 2016 Feb;91:52-60. doi: 10.1016/j.yjmcc.2015.12.016. Epub 2015 Dec 22. Review.

PMID:
26721596
8.

Amiodarone Induces Overexpression of Similar to Versican b to Repress the EGFR/Gsk3b/Snail Signaling Axis during Cardiac Valve Formation of Zebrafish Embryos.

Lee HC, Lo HC, Lo DM, Su MY, Hu JR, Wu CC, Chang SN, Dai MS, Tsai CT, Tsai HJ.

PLoS One. 2015 Dec 9;10(12):e0144751. doi: 10.1371/journal.pone.0144751. eCollection 2015.

9.

Mitral valve disease--morphology and mechanisms.

Levine RA, Hagége AA, Judge DP, Padala M, Dal-Bianco JP, Aikawa E, Beaudoin J, Bischoff J, Bouatia-Naji N, Bruneval P, Butcher JT, Carpentier A, Chaput M, Chester AH, Clusel C, Delling FN, Dietz HC, Dina C, Durst R, Fernandez-Friera L, Handschumacher MD, Jensen MO, Jeunemaitre XP, Le Marec H, Le Tourneau T, Markwald RR, Mérot J, Messas E, Milan DP, Neri T, Norris RA, Peal D, Perrocheau M, Probst V, Pucéat M, Rosenthal N, Solis J, Schott JJ, Schwammenthal E, Slaugenhaupt SA, Song JK, Yacoub MH; Leducq Mitral Transatlantic Network.

Nat Rev Cardiol. 2015 Dec;12(12):689-710. doi: 10.1038/nrcardio.2015.161. Epub 2015 Oct 20. Review.

10.

Muscleblind-like 1 is required for normal heart valve development in vivo.

Coram RJ, Stillwagon SJ, Guggilam A, Jenkins MW, Swanson MS, Ladd AN.

BMC Dev Biol. 2015 Oct 15;15:36. doi: 10.1186/s12861-015-0087-4.

11.

Histone Deacetylase 3 Coordinates Deacetylase-independent Epigenetic Silencing of Transforming Growth Factor-β1 (TGF-β1) to Orchestrate Second Heart Field Development.

Lewandowski SL, Janardhan HP, Trivedi CM.

J Biol Chem. 2015 Nov 6;290(45):27067-89. doi: 10.1074/jbc.M115.684753. Epub 2015 Sep 29.

PMID:
26420484
12.

BMPER Promotes Epithelial-Mesenchymal Transition in the Developing Cardiac Cushions.

Dyer L, Lockyer P, Wu Y, Saha A, Cyr C, Moser M, Pi X, Patterson C.

PLoS One. 2015 Sep 29;10(9):e0139209. doi: 10.1371/journal.pone.0139209. eCollection 2015.

13.

3-Dimensional spatially organized PEG-based hydrogels for an aortic valve co-culture model.

Puperi DS, Balaoing LR, O'Connell RW, West JL, Grande-Allen KJ.

Biomaterials. 2015 Oct;67:354-64. doi: 10.1016/j.biomaterials.2015.07.039. Epub 2015 Jul 21.

PMID:
26241755
14.

Modulation of human valve interstitial cell phenotype and function using a fibroblast growth factor 2 formulation.

Latif N, Quillon A, Sarathchandra P, McCormack A, Lozanoski A, Yacoub MH, Chester AH.

PLoS One. 2015 Jun 4;10(6):e0127844. doi: 10.1371/journal.pone.0127844. eCollection 2015.

15.

Reciprocal interactions between mitral valve endothelial and interstitial cells reduce endothelial-to-mesenchymal transition and myofibroblastic activation.

Shapero K, Wylie-Sears J, Levine RA, Mayer JE Jr, Bischoff J.

J Mol Cell Cardiol. 2015 Mar;80:175-85. doi: 10.1016/j.yjmcc.2015.01.006. Epub 2015 Jan 26.

16.

Galnt1 is required for normal heart valve development and cardiac function.

Tian E, Stevens SR, Guan Y, Springer DA, Anderson SA, Starost MF, Patel V, Ten Hagen KG, Tabak LA.

PLoS One. 2015 Jan 23;10(1):e0115861. doi: 10.1371/journal.pone.0115861. eCollection 2015.

17.

Comparison of Mesenchymal Stem Cell Source Differentiation Toward Human Pediatric Aortic Valve Interstitial Cells within 3D Engineered Matrices.

Duan B, Hockaday LA, Das S, Xu C, Butcher JT.

Tissue Eng Part C Methods. 2015 Aug;21(8):795-807. doi: 10.1089/ten.TEC.2014.0589. Epub 2015 Apr 13.

PMID:
25594437
18.

Ex vivo 4D visualization of aortic valve dynamics in a murine model with optical coherence tomography.

Schnabel C, Jannasch A, Faak S, Waldow T, Koch E.

Biomed Opt Express. 2014 Nov 7;5(12):4201-12. doi: 10.1364/BOE.5.004201. eCollection 2014 Dec 1.

19.

Loss of β-catenin promotes chondrogenic differentiation of aortic valve interstitial cells.

Fang M, Alfieri CM, Hulin A, Conway SJ, Yutzey KE.

Arterioscler Thromb Vasc Biol. 2014 Dec;34(12):2601-8. doi: 10.1161/ATVBAHA.114.304579. Epub 2014 Oct 23.

20.

Cardiac valve cells and their microenvironment--insights from in vitro studies.

Wang H, Leinwand LA, Anseth KS.

Nat Rev Cardiol. 2014 Dec;11(12):715-27. doi: 10.1038/nrcardio.2014.162. Epub 2014 Oct 14. Review.

Items per page

Supplemental Content

Write to the Help Desk