Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 60

Cited In for PubMed (Select 20130188)

1.

Parkinson's disease: animal models and dopaminergic cell vulnerability.

Blesa J, Przedborski S.

Front Neuroanat. 2014 Dec 15;8:155. doi: 10.3389/fnana.2014.00155. eCollection 2014. Review.

2.

Proposed Motor Scoring System in a Porcine Model of Parkinson's Disease induced by Chronic Subcutaneous Injection of MPTP.

Moon JH, Kim JH, Im HJ, Lee DS, Park EJ, Song K, Oh HJ, Hyun SB, Kang SC, Kim H, Moon HE, Park HW, Lee HJ, Kim EJ, Kim S, Lee BC, Paek SH.

Exp Neurobiol. 2014 Sep;23(3):258-65. doi: 10.5607/en.2014.23.3.258. Epub 2014 Sep 18.

3.

Genetic and pharmacological evidence that G2019S LRRK2 confers a hyperkinetic phenotype, resistant to motor decline associated with aging.

Longo F, Russo I, Shimshek DR, Greggio E, Morari M.

Neurobiol Dis. 2014 Nov;71:62-73. doi: 10.1016/j.nbd.2014.07.013. Epub 2014 Aug 6.

4.

LRRK2 kinase activity regulates synaptic vesicle trafficking and neurotransmitter release through modulation of LRRK2 macro-molecular complex.

Cirnaru MD, Marte A, Belluzzi E, Russo I, Gabrielli M, Longo F, Arcuri L, Murru L, Bubacco L, Matteoli M, Fedele E, Sala C, Passafaro M, Morari M, Greggio E, Onofri F, Piccoli G.

Front Mol Neurosci. 2014 May 27;7:49. doi: 10.3389/fnmol.2014.00049. eCollection 2014.

5.

Discovery of a Highly Selective, Brain-Penetrant Aminopyrazole LRRK2 Inhibitor.

Chan BK, Estrada AA, Chen H, Atherall J, Baker-Glenn C, Beresford A, Burdick DJ, Chambers M, Dominguez SL, Drummond J, Gill A, Kleinheinz T, Le Pichon CE, Medhurst AD, Liu X, Moffat JG, Nash K, Scearce-Levie K, Sheng Z, Shore DG, Van de Poël H, Zhang S, Zhu H, Sweeney ZK.

ACS Med Chem Lett. 2012 Nov 23;4(1):85-90. doi: 10.1021/ml3003007. eCollection 2013 Jan 10.

6.

Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission.

Karayannis T, Au E, Patel JC, Kruglikov I, Markx S, Delorme R, Héron D, Salomon D, Glessner J, Restituito S, Gordon A, Rodriguez-Murillo L, Roy NC, Gogos JA, Rudy B, Rice ME, Karayiorgou M, Hakonarson H, Keren B, Huguet G, Bourgeron T, Hoeffer C, Tsien RW, Peles E, Fishell G.

Nature. 2014 Jul 10;511(7508):236-40.

7.

Protein phosphorylation in neurodegeneration: friend or foe?

Tenreiro S, Eckermann K, Outeiro TF.

Front Mol Neurosci. 2014 May 13;7:42. doi: 10.3389/fnmol.2014.00042. eCollection 2014. Review.

8.

Orchestrated increase of dopamine and PARK mRNAs but not miR-133b in dopamine neurons in Parkinson's disease.

Schlaudraff F, Gründemann J, Fauler M, Dragicevic E, Hardy J, Liss B.

Neurobiol Aging. 2014 Oct;35(10):2302-15. doi: 10.1016/j.neurobiolaging.2014.03.016. Epub 2014 Mar 22.

9.

Unaltered striatal dopamine release levels in young Parkin knockout, Pink1 knockout, DJ-1 knockout and LRRK2 R1441G transgenic mice.

Sanchez G, Varaschin RK, Büeler H, Marcogliese PC, Park DS, Trudeau LE.

PLoS One. 2014 Apr 14;9(4):e94826. doi: 10.1371/journal.pone.0094826. eCollection 2014.

10.

Leucine-rich repeat kinase 2 binds to neuronal vesicles through protein interactions mediated by its C-terminal WD40 domain.

Piccoli G, Onofri F, Cirnaru MD, Kaiser CJ, Jagtap P, Kastenmüller A, Pischedda F, Marte A, von Zweydorf F, Vogt A, Giesert F, Pan L, Antonucci F, Kiel C, Zhang M, Weinkauf S, Sattler M, Sala C, Matteoli M, Ueffing M, Gloeckner CJ.

Mol Cell Biol. 2014 Jun;34(12):2147-61. doi: 10.1128/MCB.00914-13. Epub 2014 Mar 31.

11.

The role of innate and adaptive immunity in Parkinson's disease.

Kannarkat GT, Boss JM, Tansey MG.

J Parkinsons Dis. 2013;3(4):493-514. doi: 10.3233/JPD-130250. Review.

12.

LRRK2 affects vesicle trafficking, neurotransmitter extracellular level and membrane receptor localization.

Migheli R, Del Giudice MG, Spissu Y, Sanna G, Xiong Y, Dawson TM, Dawson VL, Galioto M, Rocchitta G, Biosa A, Serra PA, Carri MT, Crosio C, Iaccarino C.

PLoS One. 2013 Oct 22;8(10):e77198. doi: 10.1371/journal.pone.0077198. eCollection 2013.

13.

LRRK2 phosphorylates novel tau epitopes and promotes tauopathy.

Bailey RM, Covy JP, Melrose HL, Rousseau L, Watkinson R, Knight J, Miles S, Farrer MJ, Dickson DW, Giasson BI, Lewis J.

Acta Neuropathol. 2013 Dec;126(6):809-27. doi: 10.1007/s00401-013-1188-4. Epub 2013 Oct 11.

14.
15.

Non-motor and motor features in LRRK2 transgenic mice.

Bichler Z, Lim HC, Zeng L, Tan EK.

PLoS One. 2013 Jul 30;8(7):e70249. doi: 10.1371/journal.pone.0070249. Print 2013.

16.

Expression analysis of Lrrk1, Lrrk2 and Lrrk2 splice variants in mice.

Giesert F, Hofmann A, Bürger A, Zerle J, Kloos K, Hafen U, Ernst L, Zhang J, Vogt-Weisenhorn DM, Wurst W.

PLoS One. 2013 May 10;8(5):e63778. doi: 10.1371/journal.pone.0063778. Print 2013.

17.

Short- and long-term effects of LRRK2 on axon and dendrite growth.

Sepulveda B, Mesias R, Li X, Yue Z, Benson DL.

PLoS One. 2013 Apr 30;8(4):e61986. doi: 10.1371/journal.pone.0061986. Print 2013.

18.

Dopaminergic expression of the Parkinsonian gene LRRK2-G2019S leads to non-autonomous visual neurodegeneration, accelerated by increased neural demands for energy.

Hindle S, Afsari F, Stark M, Middleton CA, Evans GJ, Sweeney ST, Elliott CJ.

Hum Mol Genet. 2013 Jun 1;22(11):2129-40. doi: 10.1093/hmg/ddt061. Epub 2013 Feb 7.

19.

Mutant LRRK2 elicits calcium imbalance and depletion of dendritic mitochondria in neurons.

Cherra SJ 3rd, Steer E, Gusdon AM, Kiselyov K, Chu CT.

Am J Pathol. 2013 Feb;182(2):474-84. doi: 10.1016/j.ajpath.2012.10.027. Epub 2012 Dec 8.

20.

Premotor biomarkers for Parkinson's disease - a promising direction of research.

Haas BR, Stewart TH, Zhang J.

Transl Neurodegener. 2012 May 31;1(1):11. doi: 10.1186/2047-9158-1-11.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk