Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 50

1.

Optimization of the Solubility of HIV-1-Neutralizing Antibody 10E8 through Somatic Variation and Structure-Based Design.

Kwon YD, Georgiev IS, Ofek G, Zhang B, Asokan M, Bailer RT, Bao A, Caruso W, Chen X, Choe M, Druz A, Ko SY, Louder MK, McKee K, O'Dell S, Pegu A, Rudicell RS, Shi W, Wang K, Yang Y, Alger M, Bender MF, Carlton K, Cooper JW, Blinn J, Eudailey J, Lloyd K, Parks R, Alam SM, Haynes BF, Padte NN, Yu J, Ho DD, Huang J, Connors M, Schwartz RM, Mascola JR, Kwong PD.

J Virol. 2016 Jun 10;90(13):5899-914. doi: 10.1128/JVI.03246-15. Print 2016 Jul 1.

PMID:
27053554
2.

HIV-1 gp140 epitope recognition is influenced by immunoglobulin DH gene segment sequence.

Wang Y, Kapoor P, Parks R, Silva-Sanchez A, Alam SM, Verkoczy L, Liao HX, Zhuang Y, Burrows P, Levinson M, Elgavish A, Cui X, Haynes BF, Schroeder H Jr.

Immunogenetics. 2016 Feb;68(2):145-55. doi: 10.1007/s00251-015-0890-x. Epub 2015 Dec 19.

PMID:
26687685
3.

Structural and Thermodynamic Basis of Epitope Binding by Neutralizing and Nonneutralizing Forms of the Anti-HIV-1 Antibody 4E10.

Rujas E, Gulzar N, Morante K, Tsumoto K, Scott JK, Nieva JL, Caaveiro JM.

J Virol. 2015 Dec;89(23):11975-89. doi: 10.1128/JVI.01793-15. Epub 2015 Sep 16.

4.

The role of evolutionarily conserved germ-line DH sequence in B-1 cell development and natural antibody production.

Vale AM, Nobrega A, Schroeder HW Jr.

Ann N Y Acad Sci. 2015 Dec;1362:48-56. doi: 10.1111/nyas.12808. Epub 2015 Jun 23. Review.

PMID:
26104486
5.

Designer antigens for elicitation of broadly neutralizing antibodies against HIV.

Kok T, Gaeguta A, Finnie J, Gorry PR, Churchill M, Li P.

Clin Transl Immunology. 2014 Sep 26;3(9):e24. doi: 10.1038/cti.2014.22. eCollection 2014 Sep.

6.

Synergy in monoclonal antibody neutralization of HIV-1 pseudoviruses and infectious molecular clones.

Miglietta R, Pastori C, Venuti A, Ochsenbauer C, Lopalco L.

J Transl Med. 2014 Dec 13;12:346. doi: 10.1186/s12967-014-0346-3.

7.

Dramatic potentiation of the antiviral activity of HIV antibodies by cholesterol conjugation.

Lacek K, Urbanowicz RA, Troise F, De Lorenzo C, Severino V, Di Maro A, Tarr AW, Ferrara F, Ploss A, Temperton N, Ball JK, Nicosia A, Cortese R, Pessi A.

J Biol Chem. 2014 Dec 12;289(50):35015-28. doi: 10.1074/jbc.M114.591826. Epub 2014 Oct 23.

8.

A fusion intermediate gp41 immunogen elicits neutralizing antibodies to HIV-1.

Lai RP, Hock M, Radzimanowski J, Tonks P, Hulsik DL, Effantin G, Seilly DJ, Dreja H, Kliche A, Wagner R, Barnett SW, Tumba N, Morris L, LaBranche CC, Montefiori DC, Seaman MS, Heeney JL, Weissenhorn W.

J Biol Chem. 2014 Oct 24;289(43):29912-26. doi: 10.1074/jbc.M114.569566. Epub 2014 Aug 26.

9.

Computational design of protein antigens that interact with the CDR H3 loop of HIV broadly neutralizing antibody 2F5.

Azoitei ML, Ban YA, Kalyuzhny O, Guenaga J, Schroeter A, Porter J, Wyatt R, Schief WR.

Proteins. 2014 Oct;82(10):2770-82. doi: 10.1002/prot.24641. Epub 2014 Jul 31.

10.

Chemically modified peptides based on the membrane-proximal external region of the HIV-1 envelope induce high-titer, epitope-specific nonneutralizing antibodies in rabbits.

Venditto VJ, Wieczorek L, Molnar S, Teque F, Landucci G, Watson DS, Forthal D, Polonis VR, Levy JA, Szoka FC Jr.

Clin Vaccine Immunol. 2014 Aug;21(8):1086-93. doi: 10.1128/CVI.00320-14. Epub 2014 May 28.

11.

Co-expression of foreign proteins tethered to HIV-1 envelope glycoprotein on the cell surface by introducing an intervening second membrane-spanning domain.

Wang H, Li X, Nakane S, Liu S, Ishikawa H, Iwamoto A, Matsuda Z.

PLoS One. 2014 May 7;9(5):e96790. doi: 10.1371/journal.pone.0096790. eCollection 2014.

12.

Autoreactivity in HIV-1 broadly neutralizing antibodies: implications for their function and induction by vaccination.

Verkoczy L, Diaz M.

Curr Opin HIV AIDS. 2014 May;9(3):224-34. doi: 10.1097/COH.0000000000000049. Review.

13.

Structural insights on the role of antibodies in HIV-1 vaccine and therapy.

West AP Jr, Scharf L, Scheid JF, Klein F, Bjorkman PJ, Nussenzweig MC.

Cell. 2014 Feb 13;156(4):633-48. doi: 10.1016/j.cell.2014.01.052. Review.

14.

Estimating the probability of polyreactive antibodies 4E10 and 2F5 disabling a gp41 trimer after T cell-HIV adhesion.

Hu B, Liao HX, Alam SM, Goldstein B.

PLoS Comput Biol. 2014 Jan 30;10(1):e1003431. doi: 10.1371/journal.pcbi.1003431. eCollection 2014 Jan.

15.

Structure of an HIV-1-neutralizing antibody target, the lipid-bound gp41 envelope membrane proximal region trimer.

Reardon PN, Sage H, Dennison SM, Martin JW, Donald BR, Alam SM, Haynes BF, Spicer LD.

Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1391-6. doi: 10.1073/pnas.1309842111. Epub 2014 Jan 13.

16.

Structural basis for HIV-1 neutralization by 2F5-like antibodies m66 and m66.6.

Ofek G, Zirkle B, Yang Y, Zhu Z, McKee K, Zhang B, Chuang GY, Georgiev IS, O'Dell S, Doria-Rose N, Mascola JR, Dimitrov DS, Kwong PD.

J Virol. 2014 Mar;88(5):2426-41. doi: 10.1128/JVI.02837-13. Epub 2013 Dec 11.

17.

Antigenic properties of the HIV envelope on virions in solution.

Ray K, Mengistu M, Yu L, Lewis GK, Lakowicz JR, DeVico AL.

J Virol. 2014 Feb;88(3):1795-808. doi: 10.1128/JVI.03048-13. Epub 2013 Nov 27. Erratum in: J Virol. 2014 May;88(10):5901. Yu, Lei [added].

18.

Chimeric rhinoviruses displaying MPER epitopes elicit anti-HIV neutralizing responses.

Yi G, Lapelosa M, Bradley R, Mariano TM, Dietz DE, Hughes S, Wrin T, Petropoulos C, Gallicchio E, Levy RM, Arnold E, Arnold GF.

PLoS One. 2013 Sep 6;8(9):e72205. doi: 10.1371/journal.pone.0072205. eCollection 2013.

20.

Advances in structure-based vaccine design.

Kulp DW, Schief WR.

Curr Opin Virol. 2013 Jun;3(3):322-31. doi: 10.1016/j.coviro.2013.05.010. Epub 2013 Jun 25. Review.

Items per page

Supplemental Content

Write to the Help Desk