Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 22

1.

Diversity of flux distribution in central carbon metabolism of S. cerevisiae strains from diverse environments.

Nidelet T, Brial P, Camarasa C, Dequin S.

Microb Cell Fact. 2016 Apr 5;15(1):58. doi: 10.1186/s12934-016-0456-0.

2.

Metabolic Trade-offs in Yeast are Caused by F1F0-ATP synthase.

Nilsson A, Nielsen J.

Sci Rep. 2016 Mar 1;6:22264. doi: 10.1038/srep22264.

3.

Reduced Histone Expression or a Defect in Chromatin Assembly Induces Respiration.

Galdieri L, Zhang T, Rogerson D, Vancura A.

Mol Cell Biol. 2016 Jan 19;36(7):1064-77. doi: 10.1128/MCB.00770-15.

PMID:
26787838
4.

Inhibitory Role of Greatwall-Like Protein Kinase Rim15p in Alcoholic Fermentation via Upregulating the UDP-Glucose Synthesis Pathway in Saccharomyces cerevisiae.

Watanabe D, Zhou Y, Hirata A, Sugimoto Y, Takagi K, Akao T, Ohya Y, Takagi H, Shimoi H.

Appl Environ Microbiol. 2015 Oct 23;82(1):340-51. doi: 10.1128/AEM.02977-15.

5.
6.

Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine.

Qin J, Zhou YJ, Krivoruchko A, Huang M, Liu L, Khoomrung S, Siewers V, Jiang B, Nielsen J.

Nat Commun. 2015 Sep 8;6:8224. doi: 10.1038/ncomms9224.

7.

A novel process-based model of microbial growth: self-inhibition in Saccharomyces cerevisiae aerobic fed-batch cultures.

Mazzoleni S, Landi C, Cartenì F, de Alteriis E, Giannino F, Paciello L, Parascandola P.

Microb Cell Fact. 2015 Jul 30;14:109. doi: 10.1186/s12934-015-0295-4.

8.

Transcriptome wide annotation of eukaryotic RNase III reactivity and degradation signals.

Gagnon J, Lavoie M, Catala M, Malenfant F, Elela SA.

PLoS Genet. 2015 Feb 13;11(2):e1005000. doi: 10.1371/journal.pgen.1005000. eCollection 2015 Feb.

9.

Protein acetylation and acetyl coenzyme a metabolism in budding yeast.

Galdieri L, Zhang T, Rogerson D, Lleshi R, Vancura A.

Eukaryot Cell. 2014 Dec;13(12):1472-83. doi: 10.1128/EC.00189-14. Epub 2014 Oct 17. Review.

10.

Flux-p: automating metabolic flux analysis.

Ebert BE, Lamprecht AL, Steffen B, Blank LM.

Metabolites. 2012 Nov 12;2(4):872-90. doi: 10.3390/metabo2040872.

11.

Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis.

Slavov N, Budnik BA, Schwab D, Airoldi EM, van Oudenaarden A.

Cell Rep. 2014 May 8;7(3):705-14. doi: 10.1016/j.celrep.2014.03.057. Epub 2014 Apr 24.

12.

Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions.

Tilloy V, Ortiz-Julien A, Dequin S.

Appl Environ Microbiol. 2014 Apr;80(8):2623-32. doi: 10.1128/AEM.03710-13. Epub 2014 Feb 14.

13.

Yeast phospholipase C is required for normal acetyl-CoA homeostasis and global histone acetylation.

Galdieri L, Chang J, Mehrotra S, Vancura A.

J Biol Chem. 2013 Sep 27;288(39):27986-98. doi: 10.1074/jbc.M113.492348. Epub 2013 Aug 2.

14.

The fungal α-aminoadipate pathway for lysine biosynthesis requires two enzymes of the aconitase family for the isomerization of homocitrate to homoisocitrate.

Fazius F, Shelest E, Gebhardt P, Brock M.

Mol Microbiol. 2012 Dec;86(6):1508-30. doi: 10.1111/mmi.12076. Epub 2012 Nov 6.

15.

Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae.

Papini M, Nookaew I, Uhlén M, Nielsen J.

Microb Cell Fact. 2012 Oct 9;11:136. doi: 10.1186/1475-2859-11-136.

16.

Predictive potential of flux balance analysis of Saccharomyces cerevisiae using as optimization function combinations of cell compartmental objectives.

García Sánchez CE, Vargas García CA, Torres Sáez RG.

PLoS One. 2012;7(8):e43006. doi: 10.1371/journal.pone.0043006. Epub 2012 Aug 9.

17.
18.

Acetyl-CoA carboxylase regulates global histone acetylation.

Galdieri L, Vancura A.

J Biol Chem. 2012 Jul 6;287(28):23865-76. doi: 10.1074/jbc.M112.380519. Epub 2012 May 11.

19.

Development of quantitative metabolomics for Pichia pastoris.

Carnicer M, Canelas AB, Ten Pierick A, Zeng Z, van Dam J, Albiol J, Ferrer P, Heijnen JJ, van Gulik W.

Metabolomics. 2012 Apr;8(2):284-298. Epub 2011 Apr 21.

20.

Engineering yield and rate of reductive biotransformation in Escherichia coli by partial cyclization of the pentose phosphate pathway and PTS-independent glucose transport.

Siedler S, Bringer S, Blank LM, Bott M.

Appl Microbiol Biotechnol. 2012 Feb;93(4):1459-67. doi: 10.1007/s00253-011-3626-3. Epub 2011 Oct 16.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk