Format
Items per page
Sort by

Send to:

Choose Destination

Results: 18

Cited In for PubMed (Select 19465600)

1.

Zygotic genome activation triggers the DNA replication checkpoint at the midblastula transition.

Blythe SA, Wieschaus EF.

Cell. 2015 Mar 12;160(6):1169-81. doi: 10.1016/j.cell.2015.01.050. Epub 2015 Mar 5.

PMID:
25748651
2.

Histone titration against the genome sets the DNA-to-cytoplasm threshold for the Xenopus midblastula transition.

Amodeo AA, Jukam D, Straight AF, Skotheim JM.

Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):E1086-95. doi: 10.1073/pnas.1413990112. Epub 2015 Feb 23.

PMID:
25713373
3.

Nuclear size scaling during Xenopus early development contributes to midblastula transition timing.

Jevtić P, Levy DL.

Curr Biol. 2015 Jan 5;25(1):45-52. doi: 10.1016/j.cub.2014.10.051. Epub 2014 Dec 4.

PMID:
25484296
4.

From egg to gastrula: how the cell cycle is remodeled during the Drosophila mid-blastula transition.

Farrell JA, O'Farrell PH.

Annu Rev Genet. 2014;48:269-94. doi: 10.1146/annurev-genet-111212-133531. Epub 2014 Sep 5.

PMID:
25195504
5.

Modeling of the dorsal gradient across species reveals interaction between embryo morphology and Toll signaling pathway during evolution.

Ambrosi P, Chahda JS, Koslen HR, Chiel HJ, Mizutani CM.

PLoS Comput Biol. 2014 Aug 28;10(8):e1003807. doi: 10.1371/journal.pcbi.1003807. eCollection 2014 Aug.

6.

Zygotic genome activation during the maternal-to-zygotic transition.

Lee MT, Bonneau AR, Giraldez AJ.

Annu Rev Cell Dev Biol. 2014;30:581-613. doi: 10.1146/annurev-cellbio-100913-013027. Epub 2014 Aug 11. Review.

PMID:
25150012
7.

Titration of four replication factors is essential for the Xenopus laevis midblastula transition.

Collart C, Allen GE, Bradshaw CR, Smith JC, Zegerman P.

Science. 2013 Aug 23;341(6148):893-6. doi: 10.1126/science.1241530. Epub 2013 Aug 1.

8.

Gene transcription is coordinated with, but not dependent on, cell divisions during C. elegans embryonic fate specification.

Nair G, Walton T, Murray JI, Raj A.

Development. 2013 Aug;140(16):3385-94. doi: 10.1242/dev.098012. Epub 2013 Jul 17.

9.

Identification of the zebrafish maternal and paternal transcriptomes.

Harvey SA, Sealy I, Kettleborough R, Fenyes F, White R, Stemple D, Smith JC.

Development. 2013 Jul;140(13):2703-10. doi: 10.1242/dev.095091. Epub 2013 May 29.

10.

Uncovering a dynamic feature of the transcriptional regulatory network for anterior-posterior patterning in the Drosophila embryo.

Liu J, Ma J.

PLoS One. 2013 Apr 30;8(4):e62641. doi: 10.1371/journal.pone.0062641. Print 2013.

11.

Transcriptional and epigenetic signatures of zygotic genome activation during early Drosophila embryogenesis.

Darbo E, Herrmann C, Lecuit T, Thieffry D, van Helden J.

BMC Genomics. 2013 Apr 5;14:226. doi: 10.1186/1471-2164-14-226.

12.

Transgenerational propagation and quantitative maintenance of paternal centromeres depends on Cid/Cenp-A presence in Drosophila sperm.

Raychaudhuri N, Dubruille R, Orsi GA, Bagheri HC, Loppin B, Lehner CF.

PLoS Biol. 2012;10(12):e1001434. doi: 10.1371/journal.pbio.1001434. Epub 2012 Dec 27.

13.

Posttranslational control of Cdc25 degradation terminates Drosophila's early cell-cycle program.

Di Talia S, She R, Blythe SA, Lu X, Zhang QF, Wieschaus EF.

Curr Biol. 2013 Jan 21;23(2):127-32. doi: 10.1016/j.cub.2012.11.029. Epub 2013 Jan 3.

14.

Mechanism and regulation of Cdc25/Twine protein destruction in embryonic cell-cycle remodeling.

Farrell JA, O'Farrell PH.

Curr Biol. 2013 Jan 21;23(2):118-26. doi: 10.1016/j.cub.2012.11.036. Epub 2013 Jan 3.

15.

Geminin is required for zygotic gene expression at the Xenopus mid-blastula transition.

Kerns SL, Schultz KM, Barry KA, Thorne TM, McGarry TJ.

PLoS One. 2012;7(5):e38009. doi: 10.1371/journal.pone.0038009. Epub 2012 May 25.

16.

Noncanonical compensation of zygotic X transcription in early Drosophila melanogaster development revealed through single-embryo RNA-seq.

Lott SE, Villalta JE, Schroth GP, Luo S, Tonkin LA, Eisen MB.

PLoS Biol. 2011 Feb 8;9(2):e1000590. doi: 10.1371/journal.pbio.1000590.

17.

dFMRP and Caprin, translational regulators of synaptic plasticity, control the cell cycle at the Drosophila mid-blastula transition.

Papoulas O, Monzo KF, Cantin GT, Ruse C, Yates JR 3rd, Ryu YH, Sisson JC.

Development. 2010 Dec;137(24):4201-9. doi: 10.1242/dev.055046. Epub 2010 Nov 10.

18.

Cell cycle regulation via inter-nuclear communication during the early embryonic development of Drosophila melanogaster.

Lu X, Drocco J, Wieschaus EF.

Cell Cycle. 2010 Jul 15;9(14):2908-10. Epub 2010 Jul 11. No abstract available.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk