Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 47

Cited In for PubMed (Select 19303851)

1.

Ser or Leu: structural snapshots of mistranslation in Candida albicans.

Sárkány Z, Silva A, Pereira PJ, Macedo-Ribeiro S.

Front Mol Biosci. 2014 Dec 19;1:27. doi: 10.3389/fmolb.2014.00027. eCollection 2014. Review.

2.

The robustness of a signaling complex to domain rearrangements facilitates network evolution.

Sato PM, Yoganathan K, Jung JH, Peisajovich SG.

PLoS Biol. 2014 Dec 9;12(12):e1002012. doi: 10.1371/journal.pbio.1002012. eCollection 2014 Dec.

3.

The Dictyostelium MAPK ERK1 is phosphorylated in a secondary response to early developmental signaling.

Schwebs DJ, Hadwiger JA.

Cell Signal. 2015 Jan;27(1):147-55. doi: 10.1016/j.cellsig.2014.10.009. Epub 2014 Oct 29.

PMID:
25451080
4.

Cdc42p-interacting protein Bem4p regulates the filamentous-growth mitogen-activated protein kinase pathway.

Pitoniak A, Chavel CA, Chow J, Smith J, Camara D, Karunanithi S, Li B, Wolfe KH, Cullen PJ.

Mol Cell Biol. 2015 Jan;35(2):417-36. doi: 10.1128/MCB.00850-14. Epub 2014 Nov 10.

PMID:
25384973
5.

Protein-tyrosine phosphorylation interaction network in Bacillus subtilis reveals new substrates, kinase activators and kinase cross-talk.

Shi L, Pigeonneau N, Ventroux M, Derouiche A, Bidnenko V, Mijakovic I, Noirot-Gros MF.

Front Microbiol. 2014 Oct 22;5:538. doi: 10.3389/fmicb.2014.00538. eCollection 2014.

6.

The p38β mitogen-activated protein kinase possesses an intrinsic autophosphorylation activity, generated by a short region composed of the α-G helix and MAPK insert.

Beenstock J, Ben-Yehuda S, Melamed D, Admon A, Livnah O, Ahn NG, Engelberg D.

J Biol Chem. 2014 Aug 22;289(34):23546-56. doi: 10.1074/jbc.M114.578237. Epub 2014 Jul 8.

PMID:
25006254
7.

Scaffold Function of Ca2+-Dependent Protein Kinase: Tobacco Ca2+-DEPENDENT PROTEIN KINASE1 Transfers 14-3-3 to the Substrate REPRESSION OF SHOOT GROWTH after Phosphorylation.

Ito T, Nakata M, Fukazawa J, Ishida S, Takahashi Y.

Plant Physiol. 2014 Jun 11;165(4):1737-1750. [Epub ahead of print]

PMID:
24920444
8.

Computational modeling reveals optimal strategy for kinase transport by microtubules to nerve terminals.

Koon YL, Koh CG, Chiam KH.

PLoS One. 2014 Apr 1;9(4):e92437. doi: 10.1371/journal.pone.0092437. eCollection 2014.

9.

Scaffold state switching amplifies, accelerates, and insulates protein kinase C signaling.

Greenwald EC, Redden JM, Dodge-Kafka KL, Saucerman JJ.

J Biol Chem. 2014 Jan 24;289(4):2353-60. doi: 10.1074/jbc.M113.497941. Epub 2013 Dec 3.

10.

Arrestin-3 binds c-Jun N-terminal kinase 1 (JNK1) and JNK2 and facilitates the activation of these ubiquitous JNK isoforms in cells via scaffolding.

Kook S, Zhan X, Kaoud TS, Dalby KN, Gurevich VV, Gurevich EV.

J Biol Chem. 2013 Dec 27;288(52):37332-42. doi: 10.1074/jbc.M113.510412. Epub 2013 Nov 20.

11.

Disentangling biological signaling networks by dynamic coupling of signaling lipids to modifying enzymes.

Blind RD.

Adv Biol Regul. 2014 Jan;54:25-38. doi: 10.1016/j.jbior.2013.09.015. Epub 2013 Oct 18. Review.

12.

JNK3 enzyme binding to arrestin-3 differentially affects the recruitment of upstream mitogen-activated protein (MAP) kinase kinases.

Zhan X, Kaoud TS, Kook S, Dalby KN, Gurevich VV.

J Biol Chem. 2013 Oct 4;288(40):28535-47. doi: 10.1074/jbc.M113.508085. Epub 2013 Aug 19.

13.

Exploitation of latent allostery enables the evolution of new modes of MAP kinase regulation.

Coyle SM, Flores J, Lim WA.

Cell. 2013 Aug 15;154(4):875-87. doi: 10.1016/j.cell.2013.07.019.

14.

Assigning quantitative function to post-translational modifications reveals multiple sites of phosphorylation that tune yeast pheromone signaling output.

Pincus D, Ryan CJ, Smith RD, Brent R, Resnekov O.

PLoS One. 2013;8(3):e56544. doi: 10.1371/journal.pone.0056544. Epub 2013 Mar 12. Erratum in: PLoS One. 2013;8(6). doi: 10.1371/annotation/06dfa4e4-30f5-4d37-8559-0f2a9d11f0de.

15.

Mate and fuse: how yeast cells do it.

Merlini L, Dudin O, Martin SG.

Open Biol. 2013 Mar 6;3(3):130008. doi: 10.1098/rsob.130008. Review.

16.

Rts1-protein phosphatase 2A antagonizes Ptr3-mediated activation of the signaling protease Ssy5 by casein kinase I.

Omnus DJ, Ljungdahl PO.

Mol Biol Cell. 2013 May;24(9):1480-92. doi: 10.1091/mbc.E13-01-0019. Epub 2013 Feb 27.

17.

How scaffolds shape MAPK signaling: what we know and opportunities for systems approaches.

Witzel F, Maddison L, Blüthgen N.

Front Physiol. 2012 Dec 21;3:475. doi: 10.3389/fphys.2012.00475. eCollection 2012.

18.

Response to hyperosmotic stress.

Saito H, Posas F.

Genetics. 2012 Oct;192(2):289-318. doi: 10.1534/genetics.112.140863. Review.

19.

Evolutionary analysis of heterochromatin protein compatibility by interspecies complementation in Saccharomyces.

Zill OA, Scannell DR, Kuei J, Sadhu M, Rine J.

Genetics. 2012 Nov;192(3):1001-14. doi: 10.1534/genetics.112.141549. Epub 2012 Aug 24.

20.

Conformational control of the Ste5 scaffold protein insulates against MAP kinase misactivation.

Zalatan JG, Coyle SM, Rajan S, Sidhu SS, Lim WA.

Science. 2012 Sep 7;337(6099):1218-22. doi: 10.1126/science.1220683. Epub 2012 Aug 9.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk