Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 20

1.

Spinal muscular atrophy with respiratory distress syndrome (SMARD1): Case report and review of literature.

Lingappa L, Shah N, Motepalli AS, Shaik F.

Ann Indian Acad Neurol. 2016 Jul-Sep;19(3):395-8. doi: 10.4103/0972-2327.168635.

2.

Recessive REEP1 mutation is associated with congenital axonal neuropathy and diaphragmatic palsy.

Schottmann G, Seelow D, Seifert F, Morales-Gonzalez S, Gill E, von Au K, von Moers A, Stenzel W, Schuelke M.

Neurol Genet. 2015 Oct 22;1(4):e32. doi: 10.1212/NXG.0000000000000032. eCollection 2015 Dec.

3.

Rescue of a Mouse Model of Spinal Muscular Atrophy With Respiratory Distress Type 1 by AAV9-IGHMBP2 Is Dose Dependent.

Shababi M, Feng Z, Villalon E, Sibigtroth CM, Osman EY, Miller MR, Williams-Simon PA, Lombardi A, Sass TH, Atkinson AK, Garcia ML, Ko CP, Lorson CL.

Mol Ther. 2016 May;24(5):855-66. doi: 10.1038/mt.2016.33. Epub 2016 Feb 10.

PMID:
26860981
4.

Spinal muscular atrophy with respiratory distress type 1 (SMARD1) Report of a Spanish case with extended clinicopathological follow-up.

San Millan B, Fernandez JM, Navarro C, Reparaz A, Teijeira S.

Clin Neuropathol. 2016 Mar-Apr;35(2):58-65. doi: 10.5414/NP300902.

5.

Gene therapy rescues disease phenotype in a spinal muscular atrophy with respiratory distress type 1 (SMARD1) mouse model.

Nizzardo M, Simone C, Rizzo F, Salani S, Dametti S, Rinchetti P, Del Bo R, Foust K, Kaspar BK, Bresolin N, Comi GP, Corti S.

Sci Adv. 2015 Mar 13;1(2):e1500078. doi: 10.1126/sciadv.1500078. eCollection 2015 Mar.

6.

Diagnostic Exome Sequencing Identifies a Novel Gene, EMILIN1, Associated with Autosomal-Dominant Hereditary Connective Tissue Disease.

Capuano A, Bucciotti F, Farwell KD, Tippin Davis B, Mroske C, Hulick PJ, Weissman SM, Gao Q, Spessotto P, Colombatti A, Doliana R.

Hum Mutat. 2016 Jan;37(1):84-97. doi: 10.1002/humu.22920. Epub 2015 Nov 4.

7.

Transcriptional profiling of differentially vulnerable motor neurons at pre-symptomatic stage in the Smn (2b/-) mouse model of spinal muscular atrophy.

Murray LM, Beauvais A, Gibeault S, Courtney NL, Kothary R.

Acta Neuropathol Commun. 2015 Sep 15;3:55. doi: 10.1186/s40478-015-0231-1.

8.

Saccharomyces cerevisiae Sen1 Helicase Domain Exhibits 5'- to 3'-Helicase Activity with a Preference for Translocation on DNA Rather than RNA.

Martin-Tumasz S, Brow DA.

J Biol Chem. 2015 Sep 18;290(38):22880-9. doi: 10.1074/jbc.M115.674002. Epub 2015 Jul 20.

9.

Clinical and molecular features and therapeutic perspectives of spinal muscular atrophy with respiratory distress type 1.

Vanoli F, Rinchetti P, Porro F, Parente V, Corti S.

J Cell Mol Med. 2015 Sep;19(9):2058-66. doi: 10.1111/jcmm.12606. Epub 2015 Jun 20. Review.

10.

iPSC-Derived neural stem cells act via kinase inhibition to exert neuroprotective effects in spinal muscular atrophy with respiratory distress type 1.

Simone C, Nizzardo M, Rizzo F, Ruggieri M, Riboldi G, Salani S, Bucchia M, Bresolin N, Comi GP, Corti S.

Stem Cell Reports. 2014 Aug 12;3(2):297-311. doi: 10.1016/j.stemcr.2014.06.004. Epub 2014 Jul 4.

11.

Diagnostic Exome Sequencing and Tailored Bioinformatics of the Parents of a Deceased Child with Cobalamin Deficiency Suggests Digenic Inheritance of the MTR and LMBRD1 Genes.

Farwell Gonzalez KD, Li X, Lu HM, Lu H, Pellegrino JE, Miller RT, Zeng W, Chao EC.

JIMD Rep. 2015;15:29-37. doi: 10.1007/8904_2014_294. Epub 2014 Mar 25.

12.

Congenital lethal motor neuron disease with a novel defect in ribosome biogenesis.

Butterfield RJ, Stevenson TJ, Xing L, Newcomb TM, Nelson B, Zeng W, Li X, Lu HM, Lu H, Farwell Gonzalez KD, Wei JP, Chao EC, Prior TW, Snyder PJ, Bonkowsky JL, Swoboda KJ.

Neurology. 2014 Apr 15;82(15):1322-30. doi: 10.1212/WNL.0000000000000305. Epub 2014 Mar 19.

13.

Inherited neuropathies: clinical overview and update.

Klein CJ, Duan X, Shy ME.

Muscle Nerve. 2013 Oct;48(4):604-22. doi: 10.1002/mus.23775. Epub 2013 Jun 26. Review.

14.

Structure and Mechanisms of SF1 DNA Helicases.

Raney KD, Byrd AK, Aarattuthodiyil S.

Adv Exp Med Biol. 2013;767:17-46. doi: 10.1007/978-1-4614-5037-5_2.

15.

The Ighmbp2 helicase structure reveals the molecular basis for disease-causing mutations in DMSA1.

Lim SC, Bowler MW, Lai TF, Song H.

Nucleic Acids Res. 2012 Nov;40(21):11009-22. doi: 10.1093/nar/gks792. Epub 2012 Sep 10.

16.

Clinical approach to the diagnostic evaluation of hereditary and acquired neuromuscular diseases.

McDonald CM.

Phys Med Rehabil Clin N Am. 2012 Aug;23(3):495-563. doi: 10.1016/j.pmr.2012.06.011. Review.

17.

RNA helicases at work: binding and rearranging.

Jankowsky E.

Trends Biochem Sci. 2011 Jan;36(1):19-29. doi: 10.1016/j.tibs.2010.07.008. Review.

18.

SF1 and SF2 helicases: family matters.

Fairman-Williams ME, Guenther UP, Jankowsky E.

Curr Opin Struct Biol. 2010 Jun;20(3):313-24. doi: 10.1016/j.sbi.2010.03.011. Epub 2010 Apr 22. Review.

19.

RNA processing defects associated with diseases of the motor neuron.

Kolb SJ, Sutton S, Schoenberg DR.

Muscle Nerve. 2010 Jan;41(1):5-17. doi: 10.1002/mus.21428. Review.

20.

Biochemical and genetic evidence for a role of IGHMBP2 in the translational machinery.

de Planell-Saguer M, Schroeder DG, Rodicio MC, Cox GA, Mourelatos Z.

Hum Mol Genet. 2009 Jun 15;18(12):2115-26. doi: 10.1093/hmg/ddp134. Epub 2009 Mar 19.

Items per page

Supplemental Content

Write to the Help Desk