Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 25

Cited In for PubMed (Select 18840696)

1.

Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.

Mars RA, Nicolas P, Ciccolini M, Reilman E, Reder A, Schaffer M, Mäder U, Völker U, van Dijl JM, Denham EL.

PLoS Genet. 2015 Mar 19;11(3):e1005046. doi: 10.1371/journal.pgen.1005046. eCollection 2015 Mar.

2.

Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms.

Cairns LS, Hobley L, Stanley-Wall NR.

Mol Microbiol. 2014 Aug;93(4):587-98. doi: 10.1111/mmi.12697. Epub 2014 Jul 18. Review.

3.

Molecular mechanisms involved in Bacillus subtilis biofilm formation.

Mielich-Süss B, Lopez D.

Environ Microbiol. 2015 Mar;17(3):555-65. doi: 10.1111/1462-2920.12527. Epub 2014 Jul 7.

PMID:
24909922
4.

A DNA mimic: the structure and mechanism of action for the anti-repressor protein AbbA.

Tucker AT, Bobay BG, Banse AV, Olson AL, Soderblom EJ, Moseley MA, Thompson RJ, Varney KM, Losick R, Cavanagh J.

J Mol Biol. 2014 May 1;426(9):1911-24. doi: 10.1016/j.jmb.2014.02.010. Epub 2014 Feb 15.

PMID:
24534728
5.

Phosphorylated DegU manipulates cell fate differentiation in the Bacillus subtilis biofilm.

Marlow VL, Porter M, Hobley L, Kiley TB, Swedlow JR, Davidson FA, Stanley-Wall NR.

J Bacteriol. 2014 Jan;196(1):16-27. doi: 10.1128/JB.00930-13. Epub 2013 Oct 11.

6.

Rapid and robust signaling in the CsrA cascade via RNA-protein interactions and feedback regulation.

Adamson DN, Lim HN.

Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13120-5. doi: 10.1073/pnas.1308476110. Epub 2013 Jul 22.

7.

Functional analysis of the protein Veg, which stimulates biofilm formation in Bacillus subtilis.

Lei Y, Oshima T, Ogasawara N, Ishikawa S.

J Bacteriol. 2013 Apr;195(8):1697-705. doi: 10.1128/JB.02201-12. Epub 2013 Feb 1.

8.

Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation.

Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Guo JH.

Environ Microbiol. 2013 Mar;15(3):848-64. doi: 10.1111/j.1462-2920.2012.02860.x. Epub 2012 Aug 30.

9.

Spo0A~P imposes a temporal gate for the bimodal expression of competence in Bacillus subtilis.

Mirouze N, Desai Y, Raj A, Dubnau D.

PLoS Genet. 2012;8(3):e1002586. doi: 10.1371/journal.pgen.1002586. Epub 2012 Mar 8.

10.

Integration of σB activity into the decision-making process of sporulation initiation in Bacillus subtilis.

Reder A, Gerth U, Hecker M.

J Bacteriol. 2012 Mar;194(5):1065-74. doi: 10.1128/JB.06490-11. Epub 2011 Dec 30.

11.

Temporal competition between differentiation programs determines cell fate choice.

Kuchina A, Espinar L, Çağatay T, Balbin AO, Zhang F, Alvarado A, Garcia-Ojalvo J, Süel GM.

Mol Syst Biol. 2011 Dec 6;7:557. doi: 10.1038/msb.2011.88.

12.

Recent progress in Bacillus subtilis sporulation.

Higgins D, Dworkin J.

FEMS Microbiol Rev. 2012 Jan;36(1):131-48. doi: 10.1111/j.1574-6976.2011.00310.x. Epub 2011 Oct 25. Review.

13.

Time-resolved transcriptomics and bioinformatic analyses reveal intrinsic stress responses during batch culture of Bacillus subtilis.

Blom EJ, Ridder AN, Lulko AT, Roerdink JB, Kuipers OP.

PLoS One. 2011;6(11):e27160. doi: 10.1371/journal.pone.0027160. Epub 2011 Nov 8.

14.

Phosphorylation of Spo0A by the histidine kinase KinD requires the lipoprotein med in Bacillus subtilis.

Banse AV, Hobbs EC, Losick R.

J Bacteriol. 2011 Aug;193(15):3949-55. doi: 10.1128/JB.05199-11. Epub 2011 May 27.

15.

MecA dampens transitions to spore, biofilm exopolysaccharide and competence expression by two different mechanisms.

Prepiak P, Defrancesco M, Spadavecchia S, Mirouze N, Albano M, Persuh M, Fujita M, Dubnau D.

Mol Microbiol. 2011 May;80(4):1014-30. doi: 10.1111/j.1365-2958.2011.07627.x. Epub 2011 Apr 11.

16.

Bistable responses in bacterial genetic networks: designs and dynamical consequences.

Tiwari A, Ray JC, Narula J, Igoshin OA.

Math Biosci. 2011 May;231(1):76-89. doi: 10.1016/j.mbs.2011.03.004. Epub 2011 Mar 6. Review.

17.

Spatial regulation of histidine kinases governing biofilm formation in Bacillus subtilis.

McLoon AL, Kolodkin-Gal I, Rubinstein SM, Kolter R, Losick R.

J Bacteriol. 2011 Feb;193(3):679-85. doi: 10.1128/JB.01186-10. Epub 2010 Nov 19.

18.

Genome-wide binding profiles of the Bacillus subtilis transition state regulator AbrB and its homolog Abh reveals their interactive role in transcriptional regulation.

Chumsakul O, Takahashi H, Oshima T, Hishimoto T, Kanaya S, Ogasawara N, Ishikawa S.

Nucleic Acids Res. 2011 Jan;39(2):414-28. doi: 10.1093/nar/gkq780. Epub 2010 Sep 3.

19.

The threshold level of the sensor histidine kinase KinA governs entry into sporulation in Bacillus subtilis.

Eswaramoorthy P, Duan D, Dinh J, Dravis A, Devi SN, Fujita M.

J Bacteriol. 2010 Aug;192(15):3870-82. doi: 10.1128/JB.00466-10. Epub 2010 May 28.

20.

Broadly heterogeneous activation of the master regulator for sporulation in Bacillus subtilis.

Chastanet A, Vitkup D, Yuan GC, Norman TM, Liu JS, Losick RM.

Proc Natl Acad Sci U S A. 2010 May 4;107(18):8486-91. doi: 10.1073/pnas.1002499107. Epub 2010 Apr 19.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk