Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 25

1.

The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae.

Gartenberg MR, Smith JS.

Genetics. 2016 Aug;203(4):1563-99. doi: 10.1534/genetics.112.145243.

PMID:
27516616
2.

Absence of N-terminal acetyltransferase diversification during evolution of eukaryotic organisms.

Rathore OS, Faustino A, Prudêncio P, Van Damme P, Cox CJ, Martinho RG.

Sci Rep. 2016 Feb 10;6:21304. doi: 10.1038/srep21304.

3.

Competition between Heterochromatic Loci Allows the Abundance of the Silencing Protein, Sir4, to Regulate de novo Assembly of Heterochromatin.

Larin ML, Harding K, Williams EC, Lianga N, Doré C, Pilon S, Langis É, Yanofsky C, Rudner AD.

PLoS Genet. 2015 Nov 20;11(11):e1005425. doi: 10.1371/journal.pgen.1005425. eCollection 2015 Nov.

4.

The biological functions of Naa10 - From amino-terminal acetylation to human disease.

Dörfel MJ, Lyon GJ.

Gene. 2015 Aug 10;567(2):103-31. doi: 10.1016/j.gene.2015.04.085. Epub 2015 May 16. Review.

5.

Changes in the genome-wide localization pattern of Sir3 in Saccharomyces cerevisiae during different growth stages.

Tung SY, Lee KW, Hong JY, Lee SP, Shen HH, Liou GG.

Comput Struct Biotechnol J. 2013 Jun 19;7:e201304001. doi: 10.5936/csbj.201304001. eCollection 2013.

6.

N-alpha-terminal acetylation of histone H4 regulates arginine methylation and ribosomal DNA silencing.

Schiza V, Molina-Serrano D, Kyriakou D, Hadjiantoniou A, Kirmizis A.

PLoS Genet. 2013;9(9):e1003805. doi: 10.1371/journal.pgen.1003805. Epub 2013 Sep 19.

7.

The N-terminal acetylation of Sir3 stabilizes its binding to the nucleosome core particle.

Arnaudo N, Fernández IS, McLaughlin SH, Peak-Chew SY, Rhodes D, Martino F.

Nat Struct Mol Biol. 2013 Sep;20(9):1119-21. doi: 10.1038/nsmb.2641. Epub 2013 Aug 11.

8.

The role of multiple marks in epigenetic silencing and the emergence of a stable bivalent chromatin state.

Mukhopadhyay S, Sengupta AM.

PLoS Comput Biol. 2013;9(7):e1003121. doi: 10.1371/journal.pcbi.1003121. Epub 2013 Jul 18.

9.

N-terminal acetylation by NatC is not a general determinant for substrate subcellular localization in Saccharomyces cerevisiae.

Aksnes H, Osberg C, Arnesen T.

PLoS One. 2013 Apr 15;8(4):e61012. doi: 10.1371/journal.pone.0061012. Print 2013.

10.

Cell-cycle perturbations suppress the slow-growth defect of spt10Δ mutants in Saccharomyces cerevisiae.

Chang JS, Winston F.

G3 (Bethesda). 2013 Mar;3(3):573-83. doi: 10.1534/g3.112.005389. Epub 2013 Mar 1.

11.

The enigmatic conservation of a Rap1 binding site in the Saccharomyces cerevisiae HMR-E silencer.

Teytelman L, Osborne Nishimura EA, Özaydin B, Eisen MB, Rine J.

G3 (Bethesda). 2012 Dec;2(12):1555-62. doi: 10.1534/g3.112.004077. Epub 2012 Dec 1.

12.

Contributions of histone H3 nucleosome core surface mutations to chromatin structures, silencing and DNA repair.

Fink M, Thompson JS, Thoma F.

PLoS One. 2011;6(10):e26210. doi: 10.1371/journal.pone.0026210. Epub 2011 Oct 28.

13.

The diverse functions of Dot1 and H3K79 methylation.

Nguyen AT, Zhang Y.

Genes Dev. 2011 Jul 1;25(13):1345-58. doi: 10.1101/gad.2057811. Review.

14.

Towards a functional understanding of protein N-terminal acetylation.

Arnesen T.

PLoS Biol. 2011 May;9(5):e1001074. doi: 10.1371/journal.pbio.1001074. Epub 2011 May 31.

15.

A common telomeric gene silencing assay is affected by nucleotide metabolism.

Rossmann MP, Luo W, Tsaponina O, Chabes A, Stillman B.

Mol Cell. 2011 Apr 8;42(1):127-36. doi: 10.1016/j.molcel.2011.03.007.

16.

Dot1 and histone H3K79 methylation in natural telomeric and HM silencing.

Takahashi YH, Schulze JM, Jackson J, Hentrich T, Seidel C, Jaspersen SL, Kobor MS, Shilatifard A.

Mol Cell. 2011 Apr 8;42(1):118-26. doi: 10.1016/j.molcel.2011.03.006.

17.

Dot1 binding induces chromatin rearrangements by histone methylation-dependent and -independent mechanisms.

Stulemeijer IJ, Pike BL, Faber AW, Verzijlbergen KF, van Welsem T, Frederiks F, Lenstra TL, Holstege FC, Gasser SM, van Leeuwen F.

Epigenetics Chromatin. 2011 Feb 3;4(1):2. doi: 10.1186/1756-8935-4-2.

18.

Symmetry, asymmetry, and kinetics of silencing establishment in Saccharomyces cerevisiae revealed by single-cell optical assays.

Osborne EA, Hiraoka Y, Rine J.

Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1209-16. doi: 10.1073/pnas.1018742108. Epub 2011 Jan 24.

19.

Spt10 and Spt21 are required for transcriptional silencing in Saccharomyces cerevisiae.

Chang JS, Winston F.

Eukaryot Cell. 2011 Jan;10(1):118-29. doi: 10.1128/EC.00246-10. Epub 2010 Nov 5.

20.

Design of a minimal silencer for the silent mating-type locus HML of Saccharomyces cerevisiae.

Weber JM, Ehrenhofer-Murray AE.

Nucleic Acids Res. 2010 Dec;38(22):7991-8000. doi: 10.1093/nar/gkq689. Epub 2010 Aug 10.

Items per page

Supplemental Content

Write to the Help Desk