Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 80

Cited In for PubMed (Select 17981495)

1.

The absence of the Pseudomonas aeruginosa OprF protein leads to increased biofilm formation through variation in c-di-GMP level.

Bouffartigues E, Moscoso JA, Duchesne R, Rosay T, Fito-Boncompte L, Gicquel G, Maillot O, Bénard M, Bazire A, Brenner-Weiss G, Lesouhaitier O, Lerouge P, Dufour A, Orange N, Feuilloley MG, Overhage J, Filloux A, Chevalier S.

Front Microbiol. 2015 Jun 23;6:630. doi: 10.3389/fmicb.2015.00630. eCollection 2015.

2.

Structural and Biochemical Analysis of Tyrosine Phosphatase Related to Biofilm Formation A (TpbA) from the Opportunistic Pathogen Pseudomonas aeruginosa PAO1.

Xu K, Li S, Yang W, Li K, Bai Y, Xu Y, Jin J, Wang Y, Bartlam M.

PLoS One. 2015 Apr 24;10(4):e0124330. doi: 10.1371/journal.pone.0124330. eCollection 2015.

3.

The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms.

Rasamiravaka T, Labtani Q, Duez P, El Jaziri M.

Biomed Res Int. 2015;2015:759348. doi: 10.1155/2015/759348. Epub 2015 Mar 19. Review.

4.

There and back again: consequences of biofilm specialization under selection for dispersal.

O'Rourke D, FitzGerald CE, Traverse CC, Cooper VS.

Front Genet. 2015 Feb 11;6:18. doi: 10.3389/fgene.2015.00018. eCollection 2015.

5.

Pseudomonas putida Fis binds to the lapF promoter in vitro and represses the expression of LapF.

Lahesaare A, Moor H, Kivisaar M, Teras R.

PLoS One. 2014 Dec 29;9(12):e115901. doi: 10.1371/journal.pone.0115901. eCollection 2014.

6.

Rapid identification of bacterial biofilms and biofilm wound models using a multichannel nanosensor.

Li X, Kong H, Mout R, Saha K, Moyano DF, Robinson SM, Rana S, Zhang X, Riley MA, Rotello VM.

ACS Nano. 2014 Dec 23;8(12):12014-9. doi: 10.1021/nn505753s. Epub 2014 Dec 8.

PMID:
25454256
7.

Characterisation of pellicles formed by Acinetobacter baumannii at the air-liquid interface.

Nait Chabane Y, Marti S, Rihouey C, Alexandre S, Hardouin J, Lesouhaitier O, Vila J, Kaplan JB, Jouenne T, Dé E.

PLoS One. 2014 Oct 31;9(10):e111660. doi: 10.1371/journal.pone.0111660. eCollection 2014.

8.

O serotype-independent susceptibility of Pseudomonas aeruginosa to lectin-like pyocins.

Ghequire MG, Dingemans J, Pirnay JP, De Vos D, Cornelis P, De Mot R.

Microbiologyopen. 2014 Dec;3(6):875-84. doi: 10.1002/mbo3.210. Epub 2014 Sep 16.

9.

Sound waves effectively assist tobramycin in elimination of Pseudomonas aeruginosa biofilms in vitro.

Bandara HM, Harb A, Kolacny D Jr, Martins P, Smyth HD.

AAPS PharmSciTech. 2014 Dec;15(6):1644-54. doi: 10.1208/s12249-014-0200-1. Epub 2014 Aug 26.

10.

Comparative systems biology analysis to study the mode of action of the isothiocyanate compound Iberin on Pseudomonas aeruginosa.

Tan SY, Liu Y, Chua SL, Vejborg RM, Jakobsen TH, Chew SC, Li Y, Nielsen TE, Tolker-Nielsen T, Yang L, Givskov M.

Antimicrob Agents Chemother. 2014 Nov;58(11):6648-59. doi: 10.1128/AAC.02620-13. Epub 2014 Aug 25.

11.

BdlA, DipA and induced dispersion contribute to acute virulence and chronic persistence of Pseudomonas aeruginosa.

Li Y, Petrova OE, Su S, Lau GW, Panmanee W, Na R, Hassett DJ, Davies DG, Sauer K.

PLoS Pathog. 2014 Jun 5;10(6):e1004168. doi: 10.1371/journal.ppat.1004168. eCollection 2014 Jun.

12.

Using surface plasmon resonance imaging to study bacterial biofilms.

Abadian PN, Tandogan N, Jamieson JJ, Goluch ED.

Biomicrofluidics. 2014 Mar 5;8(2):021804. doi: 10.1063/1.4867739. eCollection 2014 Mar.

13.

On a multiphase multicomponent model of biofilm growth.

Friedman A, Hu B, Xue C.

Arch Ration Mech Anal. 2014 Jan 1;211(1):257-300.

14.

AmrZ is a global transcriptional regulator implicated in iron uptake and environmental adaption in P. fluorescens F113.

Martínez-Granero F, Redondo-Nieto M, Vesga P, Martín M, Rivilla R.

BMC Genomics. 2014 Mar 26;15:237. doi: 10.1186/1471-2164-15-237.

15.

Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa.

Lovewell RR, Patankar YR, Berwin B.

Am J Physiol Lung Cell Mol Physiol. 2014 Apr 1;306(7):L591-603. doi: 10.1152/ajplung.00335.2013. Epub 2014 Jan 24. Review.

16.

The complex interplay of iron, biofilm formation, and mucoidy affecting antimicrobial resistance of Pseudomonas aeruginosa.

Oglesby-Sherrouse AG, Djapgne L, Nguyen AT, Vasil AI, Vasil ML.

Pathog Dis. 2014 Apr;70(3):307-20. doi: 10.1111/2049-632X.12132. Epub 2014 Feb 10.

17.

Biofilm matrix and its regulation in Pseudomonas aeruginosa.

Wei Q, Ma LZ.

Int J Mol Sci. 2013 Oct 18;14(10):20983-1005. doi: 10.3390/ijms141020983. Review.

18.

Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective.

Chagnot C, Zorgani MA, Astruc T, Desvaux M.

Front Microbiol. 2013 Oct 14;4:303. doi: 10.3389/fmicb.2013.00303. Review.

19.

Comparative genomics reveals distinct host-interacting traits of three major human-associated propionibacteria.

Mak TN, Schmid M, Brzuszkiewicz E, Zeng G, Meyer R, Sfanos KS, Brinkmann V, Meyer TF, Brüggemann H.

BMC Genomics. 2013 Sep 22;14:640. doi: 10.1186/1471-2164-14-640.

20.

A comprehensive analysis of in vitro and in vivo genetic fitness of Pseudomonas aeruginosa using high-throughput sequencing of transposon libraries.

Skurnik D, Roux D, Aschard H, Cattoir V, Yoder-Himes D, Lory S, Pier GB.

PLoS Pathog. 2013;9(9):e1003582. doi: 10.1371/journal.ppat.1003582. Epub 2013 Sep 5.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk