Items per page
Sort by

Send to:

Choose Destination

Results: 15

Cited In for PubMed (Select 17975004)


Identification of gene co-expression clusters in liver tissues from multiple porcine populations with high and low backfat androstenone phenotype.

Sahadevan S, Tholen E, Große-Brinkhaus C, Schellander K, Tesfaye D, Hofmann-Apitius M, Cinar MU, Gunawan A, Hölker M, Neuhoff C.

BMC Genet. 2015 Feb 28;16:21. doi: 10.1186/s12863-014-0158-8.


Targeting androgen receptor action for prostate cancer treatment: does the post-receptor level provide novel opportunities?

Heemers HV.

Int J Biol Sci. 2014 Jun 1;10(6):576-87. doi: 10.7150/ijbs.8479. eCollection 2014. Review.


Androgen-responsive serum response factor target genes regulate prostate cancer cell migration.

Verone AR, Duncan K, Godoy A, Yadav N, Bakin A, Koochekpour S, Jin JP, Heemers HV.

Carcinogenesis. 2013 Aug;34(8):1737-46. doi: 10.1093/carcin/bgt126. Epub 2013 Apr 10.


RhoA as a mediator of clinically relevant androgen action in prostate cancer cells.

Schmidt LJ, Duncan K, Yadav N, Regan KM, Verone AR, Lohse CM, Pop EA, Attwood K, Wilding G, Mohler JL, Sebo TJ, Tindall DJ, Heemers HV.

Mol Endocrinol. 2012 May;26(5):716-35. doi: 10.1210/me.2011-1130. Epub 2012 Mar 28.


FGFR-4 Arg³⁸⁸ enhances prostate cancer progression via extracellular signal-related kinase and serum response factor signaling.

Yu W, Feng S, Dakhova O, Creighton CJ, Cai Y, Wang J, Li R, Frolov A, Ayala G, Ittmann M.

Clin Cancer Res. 2011 Jul 1;17(13):4355-66. doi: 10.1158/1078-0432.CCR-10-2858. Epub 2011 May 27.


Identification of a clinically relevant androgen-dependent gene signature in prostate cancer.

Heemers HV, Schmidt LJ, Sun Z, Regan KM, Anderson SK, Duncan K, Wang D, Liu S, Ballman KV, Tindall DJ.

Cancer Res. 2011 Mar 1;71(5):1978-88. doi: 10.1158/0008-5472.CAN-10-2512. Epub 2011 Feb 15.


Deficiency of the LIM-only protein FHL2 reduces intestinal tumorigenesis in Apc mutant mice.

Labalette C, Nouët Y, Levillayer F, Colnot S, Chen J, Claude V, Huerre M, Perret C, Buendia MA, Wei Y.

PLoS One. 2010 Apr 28;5(4):e10371. doi: 10.1371/journal.pone.0010371.


Linking actin dynamics and gene transcription to drive cellular motile functions.

Olson EN, Nordheim A.

Nat Rev Mol Cell Biol. 2010 May;11(5):353-65. doi: 10.1038/nrm2890. Review.


Differential regulation of steroid nuclear receptor coregulator expression between normal and neoplastic prostate epithelial cells.

Heemers HV, Schmidt LJ, Kidd E, Raclaw KA, Regan KM, Tindall DJ.

Prostate. 2010 Jun 15;70(9):959-70. doi: 10.1002/pros.21130.


Epigenetic regulation of androgen receptor signaling in prostate cancer.

Gao L, Alumkal J.

Epigenetics. 2010 Feb 16;5(2):100-4. Epub 2010 Feb 27. Review.


SLR-2 and JMJC-1 regulate an evolutionarily conserved stress-response network.

Kirienko NV, Fay DS.

EMBO J. 2010 Feb 17;29(4):727-39. doi: 10.1038/emboj.2009.387. Epub 2010 Jan 7.


Effects of the sesquiterpene lactone parthenolide on prostate tumor-initiating cells: An integrated molecular profiling approach.

Kawasaki BT, Hurt EM, Kalathur M, Duhagon MA, Milner JA, Kim YS, Farrar WL.

Prostate. 2009 Jun 1;69(8):827-37. doi: 10.1002/pros.20931.


Androgen modulation of coregulator expression in prostate cancer cells.

Heemers HV, Regan KM, Schmidt LJ, Anderson SK, Ballman KV, Tindall DJ.

Mol Endocrinol. 2009 Apr;23(4):572-83. doi: 10.1210/me.2008-0363. Epub 2009 Jan 22.


The LIM-only protein FHL2 mediates ras-induced transformation through cyclin D1 and p53 pathways.

Labalette C, Nouët Y, Levillayer F, Armengol C, Renard CA, Soubigou G, Xia T, Buendia MA, Wei Y.

PLoS One. 2008;3(11):e3761. doi: 10.1371/journal.pone.0003761. Epub 2008 Nov 19.


Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance.

Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ.

Cancer Res. 2008 Jul 1;68(13):5469-77. doi: 10.1158/0008-5472.CAN-08-0594.

Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk